Tracelets

And Tracelet Analysis for Compositional Rewriting Systems
Nicolas Behr (IRIF, Université de Paris)

Partially based upon previous work with:	Jean Krivine (Paris 07)
Pawel Sobocinski (ECS Southampton)	
	Vincent Danos and Ilias Garnier (ENS Paris)
ACT 2019, University Of Oxford, July 152019	

Chemical reaction systems

- State: a pool of indistinguishable particles (of different types)
- Transition: e.g. $A+B \rightarrow C$
(i) select at random a type A and a type B particle; remove these
(ii) add a particle of type C
- Dynamics: transitions occur at random with probability proportional to number of possibilities that the input pattern may be found in a state
\Rightarrow highly intricate stochastic dynamics!

Historical overview (rough sketch)

Historical overview (rough sketch)

Modern systems biology: pathways

Model of the circadian clock in mammals. (source: [1])

Historical overview (rough sketch)

Historical overview (rough sketch)

The basic setup for compositional rewriting

Adhesive and extensive categories (cf. [2], Def. 3.1 fi)

A category \mathbf{C} is said to be adhesive if
(i) C has pushouts along monomorphisms,
(ii) \mathbf{C} has pullbacks, and if
(iii) pushouts along monomorphisms are van Kampen (VK) squares.

If \mathbf{C} in addition possesses a strict initial object $\varnothing \in o b(\mathbf{C})$, i.e. an object s.th. $\forall X \in o b(\mathbf{C}): \exists!i_{X}: \varnothing \hookrightarrow X$ and all $X \rightarrow \varnothing$ are isos, the category is said to be extensive. It is called finitary [3] if every object X has only finitely many subobjects (up to iso).

- Examples for finitary adhesive extensive categories [3]:
- FinSet, the category of (finite) sets and set functions
- FinGraph, the category of (finite) directed multigraphs and graph homomorphisms (and also colored/typed graphs, attributed graphs, hypergraphs,...)
- different variants of categories of finite typed or attributed graphs (Kappa!)

Brief comments on abstract category-theoretical operations:

- pushout (PO) along monomorphisms in the category Set:

Brief comments on abstract category-theoretical operations:

- pushout (PO) along monomorphisms in the category Set:

Brief comments on abstract category-theoretical operations:

- pushout (PO) along monomorphisms in the category Set:

Brief comments on abstract category-theoretical operations:

- pushout (PO) along monomorphisms in the category Set:

Interpretation:

$$
\begin{aligned}
& A-\text { intersection of } B \text { and } C \text { in } D \\
& D
\end{aligned}-\text { union of } B \text { and } C \text { along } A
$$

- pushout complement (POC) of $D \hookleftarrow B \hookleftarrow A$: a set C and monomorphisms $D \hookleftarrow C \hookleftarrow A$ such that the square $\square(A B D C)$ is a pushout

Brief comments on abstract category-theoretical operations:

- pushout (PO) along monomorphisms in the category Set:
 Interpretation: $A \quad-\quad$ intersection of B and C in D
$D-\quad$ union of B and C along A
- pushout complement (POC) of $D \hookleftarrow B \hookleftarrow A$: a set C and monomorphisms $D \hookleftarrow C \hookleftarrow A$ such that the square $\square(A B D C)$ is a pushout
- pullback (PB) along monomorphisms in the category Set:

Interpretation: $\quad A \quad-\quad$ intersection of B and C in D

Double-Pushout (DPO), $D P O^{\dagger}$ and Sesqui-Pushout (SqPO) rewriting

$$
\operatorname{Lin}(\mathbf{C}):=\{O \stackrel{o}{\leftarrow} K \xrightarrow{i} I \mid o, i \in \operatorname{mono}(\mathbf{C})\} / \cong
$$

A rule application of a rule $r \in \operatorname{Lin}(\mathbf{C})$ to an object X along a \mathbb{T}-admissible match m (resp. m^{*} for $D P O^{\dagger}$) is defined via the following type of commutative diagram (referred to as a direct derivation in the literature):

$$
\begin{aligned}
& O \leftharpoonup r=r \\
& m^{*} \downarrow \mathbb{T} \downarrow m \quad:=m^{*} \vdots \quad(B) \quad \vdots \quad(A) \downarrow m \\
& \left.r_{m}(X) \Longleftarrow X \quad r_{m}(X) \prec \cdots \cdots \cdots \bar{K}----\right\rangle X
\end{aligned}
$$

The precise details and \mathbb{T}-type admissibility are defined via

Type \mathbb{T}	nature of (B)	nature of (A)
$D P O$	PO	POC
$D P O^{\dagger}$	POC	PO
$S q P O$	PO	FPC

where POC indicates that these POCs must be constructible for admissible matches.

Key operation: rule compositions [4], [5]

Set of \mathbb{T}-type admissible matches of r_{2} into r_{1} for $\mathbb{T} \in\{D P O, S q P O\}$:

$$
\begin{gathered}
\mathbf{M}_{r_{2}}^{\mathbb{\top}}\left(r_{1}\right):=\left\{\mu_{21}=\left(I_{2} \leftarrow M_{21} \rightarrow O_{2}\right) \mid n_{1}, n_{2} \text { in } \mathbf{P O}\left(\mu_{21}\right)=\left(I_{2} \xrightarrow{n_{2}} N_{21} \stackrel{n_{1}}{\longleftrightarrow} O_{1}\right)\right. \\
\text { satisfy } \left.n_{2} \in \mathbf{M}_{r_{2}}^{\mathbb{\top}}\left(N_{21}\right) \wedge n_{1} \in \mathbf{M}_{r_{1}}^{D P O^{\dagger}}\left(N_{21}\right)\right\} .
\end{gathered}
$$

For a \mathbb{T}-type admissible match $\mu_{21}=\left(I_{2} \leftarrow M_{21} \rightarrow O_{2}\right) \in \mathbf{M}_{r_{2}}^{\mathbb{T}}\left(r_{1}\right)$, construct

From this diagram, one may compute (via pullback composition \circ of the two composable spans in the bottom row) a span of monomorphisms
$\left(O_{21} \Leftarrow I_{21}\right) \in \operatorname{Lin}(\mathbf{C})$, which we define to be the \mathbb{T}-type composition of r_{2} with r_{1} along μ_{21} (for $\mathbb{T} \in\{D P O, S q P O\}$ as in (9)):

$$
r_{2}{ }^{\mu_{21}} \triangleleft_{\mathbb{T}} r_{1}:=\left(O_{21} \Leftarrow I_{21}\right)=\left(O_{21} \Leftarrow N_{21}\right) \circ\left(N_{21} \Leftarrow I_{21}\right) .
$$

[4] Nicolas Behr and Pawel Sobocinski. "Rule Algebras for Adhesive Categories". In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1-11:21

$$
x^{0}
$$

$$
O_{1} \stackrel{r_{1}}{\stackrel{ }{c}} I_{1}
$$

$$
x^{0}
$$

$$
X_{0}
$$

$$
x^{0}
$$

$$
x^{2}
$$

$$
\begin{aligned}
& O_{1} \stackrel{r_{1}}{\stackrel{(}{4}} I_{1} \\
& \downarrow m_{1}^{*} \quad m_{1} \downarrow \\
& X_{1} \Longleftarrow{ }_{r_{1}, m_{1}} X_{0}
\end{aligned}
$$

$$
\begin{aligned}
& O_{2} \stackrel{r_{2}}{\stackrel{ }{2}} I_{2} \quad O_{1} \stackrel{r_{1}}{\stackrel{ }{2}} I_{1} \\
& \downarrow m_{1}^{*} m_{1} \downarrow \\
& X_{1} \Longleftarrow{ }_{r_{1}, m_{1}} X_{0}
\end{aligned}
$$

$$
\begin{aligned}
& O_{2} \stackrel{r_{2}}{\stackrel{ }{2}} I_{2} \quad O_{1} \stackrel{r_{1}}{\stackrel{ }{r}} I_{1} \\
& m_{2} \downarrow \downarrow m_{1}^{*} \quad m_{1} \downarrow \\
& X_{1} \Longleftarrow{ }_{r_{1}, m_{1}} X_{0}
\end{aligned}
$$

$$
\begin{aligned}
& O_{2} \stackrel{r_{2}}{\stackrel{ }{2}} I_{2} \quad O_{1} \stackrel{r_{1}}{\stackrel{ }{r}} I_{1} \\
& \downarrow m_{2}^{*} \quad m_{2} \downarrow \downarrow^{m_{1}^{*}} m_{1} \downarrow \\
& X_{2} \Longleftarrow{ }_{r_{2}, m_{2}} X_{1} \Longleftarrow r_{1, m_{1}} X_{0}
\end{aligned}
$$

$$
\begin{aligned}
& O_{2} \stackrel{r_{2}}{\leftrightarrows} I_{2} \quad O_{1} \stackrel{r_{1}}{\leftrightarrows} I_{1} \\
& \downarrow m_{2}^{*} \quad m_{2} \downarrow \downarrow m_{1}^{*} \quad m_{1} \downarrow \\
& \cdots \quad X_{2} \Longleftarrow{ }_{r_{2}, m_{2}} X_{1} \Longleftarrow r_{r_{1}, m_{1}} X_{0}
\end{aligned}
$$

$$
\begin{aligned}
& O_{2} \stackrel{r_{2}}{\leftrightarrows} I_{2} \quad O_{1} \stackrel{r_{1}}{\leftrightarrows} I_{1} \\
& \downarrow m_{2}^{*} \quad m_{2} \downarrow \downarrow m_{1}^{*} \quad m_{1} \downarrow \\
& \cdots \quad X_{2} \Longleftarrow{ }_{r_{2}, m_{2}} X_{1} \Longleftarrow r_{r_{1}, m_{1}} X_{0}
\end{aligned}
$$

$$
\begin{aligned}
& O_{2} \stackrel{r_{2}}{\leftrightarrows} I_{2} \quad O_{1} \stackrel{r_{1}}{\leftrightarrows} I_{1} \\
& \downarrow m_{2}^{*} \quad m_{2} \downarrow \downarrow m_{1}^{*} \quad m_{1} \downarrow \\
& \cdots \quad X_{2} \Longleftarrow{ }_{r_{2}, m_{2}} X_{1} \Longleftarrow r_{r_{1}, m_{1}} X_{0}
\end{aligned}
$$

$$
O_{n} \stackrel{r_{n}}{\underset{n}{n}} I_{n}
$$

$O_{n} \stackrel{r_{n}}{=} I_{n}$

$X_{n-1} \quad \cdots$
$O_{2} \stackrel{r_{2}}{\leftrightarrows} I_{2} \quad O_{1} \stackrel{r_{1}}{\leftrightarrows} I_{1}$ $\downarrow m_{2}^{*} \quad m_{2} \downarrow \downarrow_{1}^{*} \quad m_{1} \downarrow$
$X_{2} \Longleftarrow{ }_{r_{2}, m_{2}} X_{1} \Longleftarrow r_{1, m_{1}} X_{0}$

$$
\begin{aligned}
& O_{n} \stackrel{r_{n}}{ } I_{n} \\
& \mathcal{L}^{*}{ }_{n} m_{n} \downarrow \\
& X_{n} \Longleftarrow \Gamma_{r_{n}, m_{n}} X_{n-1} \quad \cdots \quad X_{2} \Longleftarrow r_{r_{2}, m_{2}} X_{1} \Longleftarrow r_{r_{1}, m_{1}} X_{0}
\end{aligned}
$$

$$
\sqrt{x}
$$

forbidden
patterns:

$$
O_{1} \stackrel{r_{1}}{\longleftarrow} I_{1} \triangleleft \mathrm{c}_{I_{1}}
$$

X_{0}
forbidden
patterns:

$$
O_{1} \stackrel{r_{1}}{\longleftarrow} I_{1} \triangleleft \mathrm{c}_{I_{1}}
$$

forbidden
patterns:

$$
O_{1} \stackrel{r_{1}}{\leftrightharpoons} I_{1} \triangleleft \mathrm{c}_{I_{1}}
$$

forbidden
patterns:

$$
O_{1} \stackrel{r_{1}}{\longleftarrow} I_{1} \triangleleft \mathrm{c}_{I_{1}}
$$

forbidden
patterns:

$$
O_{1} \stackrel{r_{1}}{\hookrightarrow} I_{1} \triangleleft \mathrm{c}_{I_{1}}
$$

forbidden
patterns:

forbidden patterns:

$$
\begin{aligned}
& O_{n} \stackrel{r_{n}}{\leftrightarrows} I_{n} \triangleleft \mathrm{c}_{I_{n}} \quad O_{1} \stackrel{r_{1}}{\leftrightarrows} I_{1} \triangleleft \mathrm{c}_{I_{1}} \\
& \downarrow \mathbb{T} \quad m_{n} \\
& X_{n} \Longleftarrow X_{n-1} \cdots X_{1} \Longleftarrow X_{0}
\end{aligned}
$$

$$
\uparrow
$$

$$
\begin{aligned}
& O_{n} \stackrel{r_{n}}{\stackrel{1}{2}} I_{n} \triangleleft \mathrm{c}_{I_{n}} \quad O_{1} \stackrel{r_{1}}{\leftrightarrows} I_{1} \triangleleft \mathrm{c}_{I_{1}} \\
& \downarrow \mathbb{T} \quad \downarrow m_{n} \downarrow \mathbb{T} \quad \downarrow^{m_{1}} \\
& X_{n} \Longleftarrow X_{n-1} \cdots X_{1} \Longleftarrow X_{0}
\end{aligned}
$$

$$
\begin{aligned}
& O_{n} \stackrel{r_{n}}{\leftrightharpoons} I_{n} \triangleleft \mathrm{c}_{I_{n}} \quad O_{1} \stackrel{r_{1}}{ } I_{1} \triangleleft \mathrm{c}_{I_{1}} \\
& \downarrow \mathbb{T} \downarrow \\
& O_{n \cdots 1}^{\downarrow} \Longleftarrow Y_{n, n-1}^{(n)} \cdots \quad Y_{2,1}^{(n)} \Longleftarrow I_{n \cdots 1}^{\downarrow} \triangleleft \mathrm{c}_{I_{n} \cdots 1} \\
& \begin{array}{l}
\underset{X_{0}}{\downarrow m_{n \ldots 1}} \\
X_{0}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& O_{n} \stackrel{r_{n}}{=} I_{n} \triangleleft \mathrm{c}_{I_{n}} \quad O_{1} \stackrel{r_{1}}{ } I_{1} \triangleleft \mathrm{c}_{I_{1}} \\
& \downarrow \mathbb{T} \downarrow \\
& O_{n \cdots 1}^{\downarrow} \Longleftarrow Y_{n, n-1}^{(n)} \cdots \quad Y_{2,1}^{(n)} \Longleftarrow I_{n \cdots 1}^{\downarrow} \triangleleft \mathrm{c}_{I_{n} \cdots 1}
\end{aligned}
$$

(a) Tracelets as (minimal) derivation traces.

(b) Tracelet generation (Definition 2.1).

(d) Tracelet analysis (Section 3).

Figure 2 Schematic overview of the tracelet and tracelet analysis framework.

Key property: compositional associativity [6], [7], [8]

[6] Nicolas Behr and Pawel Sobocinski. "Rule Algebras for Adhesive Categories". In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1-11:21
[7] Nicolas Behr. "Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework". In: arXiv preprint 1904.08357 (2019)
[8] Nicolas Behr and Jean Krivine. "Compositionality of Rewriting Rules with Conditions". In: arXiv preprint 1904.09322 (2019)

Key property: compositional associativity [6], [7], [8]

[6] Nicolas Behr and Pawel Sobocinski. "Rule Algebras for Adhesive Categories". In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1-11:21
[7] Nicolas Behr. "Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework". In: arXiv preprint 1904.08357 (2019)
[8] Nicolas Behr and Jean Krivine. "Compositionality of Rewriting Rules with Conditions". In: arXiv preprint 1904.09322 (2019)

Key property: compositional associativity [6], [7], [8]

[6] Nicolas Behr and Pawel Sobocinski. "Rule Algebras for Adhesive Categories". In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1-11:21
[7] Nicolas Behr. "Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework". In: arXiv preprint 1904.08357 (2019)
[8] Nicolas Behr and Jean Krivine. "Compositionality of Rewriting Rules with Conditions". In: arXiv preprint 1904.09322 (2019)

Key property: compositional associativity [6], [7], [8]

[6] Nicolas Behr and Pawel Sobocinski. "Rule Algebras for Adhesive Categories". In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1-11:21
[7] Nicolas Behr. "Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework". In: arXiv preprint 1904.08357 (2019)
[8] Nicolas Behr and Jean Krivine. "Compositionality of Rewriting Rules with Conditions". In: arXiv preprint 1904.09322 (2019)

Key property: compositional associativity [6], [7], [8]

[6] Nicolas Behr and Pawel Sobocinski. "Rule Algebras for Adhesive Categories". In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPlcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1-11:21
[7] Nicolas Behr. "Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework". In: arXiv preprint 1904.08357 (2019)
[8] Nicolas Behr and Jean Krivine. "Compositionality of Rewriting Rules with Conditions". In: arXiv preprint 1904.09322 (2019)

Key property: compositional associativity [6], [7], [8]

[6] Nicolas Behr and Pawel Sobocinski. "Rule Algebras for Adhesive Categories". In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1-11:21
[7] Nicolas Behr. "Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework". In: arXiv preprint 1904.08357 (2019)
[8] Nicolas Behr and Jean Krivine. "Compositionality of Rewriting Rules with Conditions". In: arXiv preprint 1904.09322 (2019)

Key property: compositional associativity [6], [7], [8]

[6] Nicolas Behr and Pawel Sobocinski. "Rule Algebras for Adhesive Categories". In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1-11:21
[7] Nicolas Behr. "Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework". In: arXiv preprint 1904.08357 (2019)
[8] Nicolas Behr and Jean Krivine. "Compositionality of Rewriting Rules with Conditions". In: arXiv preprint 1904.09322 (2019)

Key property: compositional associativity [6], [7], [8]

[6] Nicolas Behr and Pawel Sobocinski. "Rule Algebras for Adhesive Categories". In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPlcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1-11:21
[7] Nicolas Behr. "Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework". In: arXiv preprint 1904.08357 (2019)
[8] Nicolas Behr and Jean Krivine. "Compositionality of Rewriting Rules with Conditions". In: arXiv preprint 1904.09322 (2019)

Key property: compositional associativity [6], [7], [8]

[6] Nicolas Behr and Pawel Sobocinski. "Rule Algebras for Adhesive Categories". In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPlcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1-11:21
[7] Nicolas Behr. "Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework". In: arXiv preprint 1904.08357 (2019)
[8] Nicolas Behr and Jean Krivine. "Compositionality of Rewriting Rules with Conditions". In: arXiv preprint 1904.09322 (2019)

Tracelet generation

2

Tracelets - "generative" definition [9]

Let $\mathbb{T} \in\{D P O, S q P O\}$ be the type of rewriting, and let $\overline{\operatorname{Lin}}(\mathbf{C})$ denote the set of linear rules with conditions over \mathbf{C}.

Tracelets of length 1 : the set $\mathscr{T}_{1}^{\mathbb{T}}$ of type \mathbb{T} tracelets $T(R)$ of length 1 is defined as

Tracelets - "generative" definition [9]

Tracelets of length $n+1$: given tracelets $T_{n+1} \in \mathscr{T}_{1}^{\mathbb{T}}$ of length 1 and $T_{n \cdots 1} \in \mathscr{T}_{n}^{\mathbb{T}}$ of length n (for $n \geqslant 1$), we define a span of monomorphisms $\mu=\left(I_{n+1} \hookleftarrow M \hookrightarrow O_{n \cdots 1}\right)$ as \mathbb{T}-admissible, denoted $\mu \in \mathbf{M T}_{T_{1}}^{\mathbb{T}}\left(T_{n \cdots 1}\right)$, if the following diagram is constructible:

Constructibility may fail due to non-existence of the requisite pushout complements, or because the tentative composite condition $\mathrm{c}_{I_{(n+1) \cdots 1}}$ might evaluate to false, with

$$
\begin{aligned}
\mathbf{c}_{(n+1) \ldots}:= & \operatorname{Shift}\left(I_{n \cdots 1} \hookrightarrow I_{(n+1) \cdots 1}, \mathbf{c}_{I_{n \cdots 1}}\right) \\
& \bigwedge \operatorname{Trans}\left(Y_{n+1, n}^{(n+1)} \Leftarrow I_{(n+1) \cdots 1}, \operatorname{Shift}\left(I_{n+1} \hookrightarrow Y_{n+1, n}^{(n+1)}, \mathbf{c}_{I_{n+1}}\right)\right) .
\end{aligned}
$$

Tracelets - "generative" definition [9]

Tracelets of length $n+1$: given tracelets $T_{n+1} \in \mathscr{T}_{1}^{\mathbb{T}}$ of length 1 and $T_{n \cdots 1} \in \mathscr{T}_{n}^{\mathbb{T}}$ of length n (for $n \geqslant 1$), we define a span of monomorphisms $\mu=\left(I_{n+1} \hookleftarrow M \hookrightarrow O_{n \cdots 1}\right)$ as \mathbb{T}-admissible, denoted $\mu \in \mathbf{M T}_{T_{1}}^{\mathbb{T}}\left(T_{n \cdots 1}\right)$, if the following diagram is constructible:

If $\mu \in \mathbf{M T}_{T_{1}}^{\mathbb{T}}\left(T_{n \cdots 1}\right)$, we define a tracelet $T_{n+1} \mu \angle_{\mathbb{T}} T_{n \cdots 1}$ of length $n+1$ as

We define the set $\mathscr{T}_{n+1}^{\mathbb{T}}$ of type \mathbb{T} tracelets of length $n+1$ as

$$
\mathscr{T}_{n+1}^{\mathbb{T}}:=\left\{T_{n+1}^{\mu} \angle_{\mathbb{T}} T_{n \cdots 1} \mid T_{n+1} \in \mathscr{T}_{1}^{\mathbb{T}}, T_{n \cdots 1} \in \mathscr{T}_{n}^{\mathbb{T}}, \mu \in \mathbf{M T}_{T_{1}}^{\mathbb{T}}\left(T_{n \cdots 1}\right)\right\} .
$$

Tracelets - "generative" definition [9]

Tracelets of length $n+1$: given tracelets $T_{n+1} \in \mathscr{T}_{1}^{\mathbb{T}}$ of length 1 and $T_{n \cdots 1} \in \mathscr{T}_{n}^{\mathbb{T}}$ of length n (for $n \geqslant 1$), we define a span of monomorphisms $\mu=\left(I_{n+1} \hookleftarrow M \hookrightarrow O_{n \cdots 1}\right)$ as \mathbb{T}-admissible, denoted $\mu \in \mathbf{M T}_{T_{1}}^{\mathbb{T}}\left(T_{n \cdots 1}\right)$, if the following diagram is constructible:

For later convenience, we introduce the tracelet evaluation operation [[.]],

$$
[[.]]: \mathscr{T}^{\mathbb{T}} \rightarrow \overline{\operatorname{Lin}}(\mathbf{C}): \mathscr{T}_{n}^{\mathbb{T}} \ni T \mapsto[[T]]:=\left(\left(O_{n \cdots 1} \leftharpoonup I_{n \cdots 1}\right), \mathbf{c}_{I_{n} \cdots 1}\right),
$$

with $\mathscr{T}^{\mathbb{T}}:=\bigcup_{n \geqslant 1} \mathscr{T}_{n}^{\mathbb{T}}$, and where $\left(O_{n \cdots 1} \leftharpoonup I_{n \cdots 1}\right)$ denotes the span composition

$$
\left(O_{n \cdots 1} \leftharpoonup I_{n \cdots 1}\right):=\left(O_{n \cdots 1} \Leftarrow Y_{n, n-1}^{(n)}\right) \circ \cdots \circ\left(Y_{2,1}^{(n)} \Leftarrow I_{n \cdots 1}\right) .
$$

Tracelets - "generative" definition [9]

Tracelets of length $n+1$: given tracelets $T_{n+1} \in \mathscr{T}_{1}^{\mathbb{T}}$ of length 1 and $T_{n \cdots 1} \in \mathscr{T}_{n}^{\mathbb{T}}$ of length n (for $n \geqslant 1$), we define a span of monomorphisms $\mu=\left(I_{n+1} \hookleftarrow M \hookrightarrow O_{n \cdots 1}\right)$ as \mathbb{T}-admissible, denoted $\mu \in \mathbf{M T}_{T_{1}}^{\mathbb{T}}\left(T_{n \cdots 1}\right)$, if the following diagram is constructible:

For later convenience, we introduce the tracelet evaluation operation [[.]],

$$
[[.]]: \mathscr{T}^{\mathbb{T}} \rightarrow \overline{\mathbf{L i n}}(\mathbf{C}): \mathscr{T}_{n}^{\mathbb{T}} \ni T \mapsto[[T]]:=\left(\left(O_{n \cdots 1} \leftharpoonup I_{n \cdots 1}\right), \mathbf{c}_{I_{n \cdots 1}}\right),
$$

with $\mathscr{T}^{\mathbb{T}}:=\bigcup_{n \geqslant 1} \mathscr{T}_{n}^{\mathbb{T}}$, and where $\left(O_{n \cdots 1} \leftharpoonup I_{n \cdots 1}\right)$ denotes the span composition

$$
\left(O_{n \cdots 1} \leftharpoonup I_{n \cdots 1}\right):=\left(O_{n \cdots 1} \Leftarrow Y_{n, n-1}^{(n)}\right) \circ \cdots \circ\left(Y_{2,1}^{(n)} \Leftarrow I_{n \cdots 1}\right) .
$$

Tracelet composition

1

2

3

Tracelet composition [9]

For tracelets $T^{\prime}, T \in \mathscr{T}^{\mathbb{T}}$ of lengths m and n, respectively, a span of monomorphisms $\mu=\left(I_{m \cdots 1}^{\prime} \hookleftarrow M \hookrightarrow O_{n \cdots 1}\right)$ is defined to be an admissible match of T into T^{\prime}, denoted $\mu \in \mathbf{M T}_{T^{\prime}}^{\mathbb{T}}(T)$, if (i) all requisite pushout complements exist to form the type $D \mathrm{PO}^{\dagger}$ derivations (in the sense of rules without conditions) to construct the diagram below, where $p:=m+n+1$,

and if (ii) the condition $\mathbf{c}_{I_{(m+n+1) \ldots 1}}$ below does not evaluate to false:

$$
\mathbf{c}_{I_{(m+n+1) \ldots}}:=\boldsymbol{\operatorname { S h i f t }}\left(I_{n \cdots 1} \hookrightarrow I_{(m+n+1) \cdots 1}, \mathbf{c}_{I_{n \cdots 1}}\right)
$$

$$
\bigwedge \operatorname{Trans}\left(Y_{n+1, n}^{(m+n+1)} \Leftarrow I_{(m+n+1) \cdots 1}, \operatorname{Shift}\left(I_{m \cdots 1} \hookrightarrow Y_{n+1, n}^{(n+1)}, \mathbf{c}_{I_{m \cdots 1}}\right)\right) .
$$

Tracelet composition [9]

For tracelets $T^{\prime}, T \in \mathscr{T}^{\mathbb{T}}$ of lengths m and n, respectively, a span of monomorphisms $\mu=\left(I_{m \cdots 1}^{\prime} \hookleftarrow M \hookrightarrow O_{n \cdots 1}\right)$ is defined to be an admissible match of T into T^{\prime}, denoted $\mu \in \mathbf{M T}_{T^{\prime}}^{\mathbb{T}}(T)$, if (i) all requisite pushout complements exist to form the type $D P O^{\dagger}$ derivations (in the sense of rules without conditions) to construct the diagram below, where $p:=m+n+1$,

Then for $\mu \in \mathbf{M T}_{T^{\prime}}^{\mathbb{T}}(T)$, we define the type \mathbb{T} tracelet composition of T^{\prime} with T along μ as

$$
\begin{aligned}
& O_{m}^{\prime} \stackrel{r_{m}^{\prime}}{\stackrel{r_{m}}{s}} I_{m}^{\prime} \triangleleft \mathrm{c}_{I_{m}^{\prime}} \quad O_{1} \stackrel{r_{1}}{\stackrel{ }{\leftrightarrows} I_{1} \triangleleft \mathrm{c}_{I_{1}}}
\end{aligned}
$$

Theorem: properties of the tracelet composition operation [9]

Let.$\triangleleft \mathbb{T}$. denote the \mathbb{T}-type rule composition, and let the set of \mathbb{T}-admissible matches be denoted by $\mathbf{M}_{r_{2}}^{\mathbb{T}}\left(r_{1}\right)$ (for $r_{2}, r_{1} \in \overline{\mathbf{L i n}}(\mathbf{C})$).
(i) For all $T^{\prime}, T \in \mathscr{T}^{\mathbb{T}}, \mathbf{M T}_{T^{\prime}}^{\mathbb{T}}(T)=\mathbf{M}_{\left[\left[T^{\prime}\right]\right]}^{\mathbb{T}}([[T]])$.
(ii) For all $T^{\prime}, T \in \mathscr{T}^{\mathbb{T}}$ and $\mu \in \mathbf{M T}_{T^{\prime}}^{\mathbb{T}}(T),\left[\left[T^{\prime \mu} \angle_{\mathbb{T}} T\right]\right]=\left[\left[T^{\prime}\right]\right]^{\mu} \triangleleft_{\mathbb{T}}[[T]]$.
(iii) The \mathbb{T}-type tracelet composition is associative, i.e. for any three tracelets $T_{1}, T_{2}, T_{3} \in \mathscr{T}^{\mathbb{T}}$, there exists a bijection $\varphi: S_{3(21)} \xlongequal{\cong} S_{(32) 1}$ between the sets pairs of \mathbb{T}-admissible matches of tracelets (with $T_{j i}:=T_{j} \mu_{j i} \angle_{\mathbb{T}} T_{i}$ and using property (i))

$$
\begin{aligned}
S_{3(21)} & :=\left\{\left(\mu_{21}, \mu_{3(21)}\right) \mid \mu_{21} \in \mathbf{M}_{\left[\left[T_{2}\right]\right]}^{\mathbb{T}}\left(\left[\left[T_{1}\right]\right]\right), \mu_{3(21)} \in \mathbf{M}_{\left[\left[T_{3}\right]\right]}^{\mathbb{T}}\left(\left[\left[T_{21}\right]\right]\right)\right. \\
S_{(32) 1} & :=\left\{\left(\mu_{32}, \mu_{(32) 1}\right) \mid \mu_{32} \in \mathbf{M}_{\left[\left[T_{3}\right]\right]}^{\mathbb{T}}\left(\left[\left[T_{2}\right]\right]\right), \mu_{(32) 1} \in \mathbf{M}_{\left[\left[T_{32}\right]\right]}^{\mathbb{T}}\left(\left[\left[T_{1}\right]\right]\right)\right\}
\end{aligned}
$$

such that for all $\left(\mu_{32}^{\prime}, \mu_{(32) 1}^{\prime}\right)=\varphi\left(\left(\mu_{21}, \mu_{3(21)}\right)\right)$

$$
T_{3}{ }^{\mu_{3(21)}} \angle_{\mathbb{T}}\left(T_{2}{ }^{\mu_{21}} \angle_{\mathbb{T}} T_{1}\right) \cong\left(T_{3} \mu_{32}^{\prime} \angle_{\mathbb{T}} T_{2}\right)^{\mu_{(32) 1}^{\prime}} \angle_{\mathbb{T}} T_{1} .
$$

Moreover, the bijection φ coincides with the corresponding bijection provided in the associativity theorem for \mathbb{T}-type rule compositions.

Tracelet characterization theorem [9]

For all type- \mathbb{T} tracelets $T \in \mathscr{T}_{n}^{\mathbb{T}}$ of length n, for all objects X_{0} of \mathbf{C}, and for all monomorphisms $\left(m: I_{n \cdots 1} \hookrightarrow X_{0}\right)$ such that $m \in \mathbf{M}_{[[T]]}^{\mathbb{T}}\left(X_{0}\right)$, there exists a type- \mathbb{T} direct derivation $D=T_{m}\left(X_{0}\right)$ obtained via vertically composing the squares in each column of the diagram below:

Conversely, every \mathbb{T}-direct derivation D of length n along rules $R_{j}=\left(r_{j}, \mathbf{c}_{I_{j}}\right) \in \overline{\operatorname{Lin}}(\mathbf{C})$ starting at an object X_{0} of \mathbf{C} may be cast into the form $D=T_{m}\left(X_{0}\right)$ for some tracelet T of length n and a \mathbb{T}-admissible match $m \in \mathbf{M}_{[[T]]}^{\mathbb{T}}\left(X_{0}\right)$ that are uniquely determined from D (up to isomorphisms).

Tracelet analysis

Convenient shorthand notation: subtracelets

For a tracelet $T \in \mathscr{T}_{n}^{\mathbb{T}}$ of length $n \geqslant 1$, let symbols t_{j} for $1 \leqslant j \leqslant n$ denote j-th subtracelets of T, so that $T \equiv t_{n}\left|t_{n-1}\right| \ldots \mid t_{1}$ is a concatenation of its subtracelets, with

$$
t_{j}:=\downarrow_{\substack{(n)}}^{O_{j}^{(n)} \Longleftarrow I_{j} \triangleleft \mathrm{c}_{I_{j}}} \prod_{j+1, j}^{r_{j}} \Longleftarrow Y_{j, j-1}^{(n)}, \quad Y_{n+1, n}^{(n)}:=O_{n \cdots 1}, Y_{1,0}^{(n)}:=I_{n \cdots 1}
$$

Convenient shorthand notation: subtracelets

For a tracelet $T \in \mathscr{T}_{n}^{\mathbb{T}}$ of length $n \geqslant 1$, let symbols t_{j} for $1 \leqslant j \leqslant n$ denote j-th subtracelets of T, so that $T \equiv t_{n}\left|t_{n-1}\right| \ldots \mid t_{1}$ is a concatenation of its subtracelets, with

$$
\begin{aligned}
& O_{j} \stackrel{r_{j}}{ } I_{j} \triangleleft \mathrm{C}_{I_{j}} \\
& t_{j}:=\downarrow \mathbb{T} \downarrow \quad, \quad Y_{n+1, n}^{(n)}:=O_{n \cdots 1}, Y_{1,0}^{(n)}:=I_{n \cdots 1} \text {. } \\
& Y_{j+1, j}^{(n)} \Longleftarrow Y_{j, j-1}^{(n)}
\end{aligned}
$$

Convenient shorthand notation: subtracelets

For a tracelet $T \in \mathscr{T}_{n}^{\mathbb{T}}$ of length $n \geqslant 1$, let symbols t_{j} for $1 \leqslant j \leqslant n$ denote j-th subtracelets of T, so that $T \equiv t_{n}\left|t_{n-1}\right| \ldots \mid t_{1}$ is a concatenation of its subtracelets, with

$$
t_{j}:=\downarrow_{\substack{(n)}}^{O_{j}^{(n)} \Longleftarrow I_{j} \triangleleft \mathrm{c}_{I_{j}}} \prod_{j+1, j}^{r_{j}} \Longleftarrow Y_{j, j-1}^{(n)}, \quad Y_{n+1, n}^{(n)}:=O_{n \cdots 1}, Y_{1,0}^{(n)}:=I_{n \cdots 1}
$$

Convenient shorthand notation: subtracelets

For a tracelet $T \in \mathscr{T}_{n}^{\mathbb{T}}$ of length $n \geqslant 1$, let symbols t_{j} for $1 \leqslant j \leqslant n$ denote j-th subtracelets of T, so that $T \equiv t_{n}\left|t_{n-1}\right| \ldots \mid t_{1}$ is a concatenation of its subtracelets, with

$$
\begin{aligned}
& O_{j} \leftharpoonup{ }^{r_{j}} I_{j} \triangleleft \mathrm{c}_{I_{j}} \\
& t_{j}:=\downarrow \mathbb{1} \downarrow \quad, \quad Y_{n+1, n}^{(n)}:=O_{n \cdots 1}, Y_{1,0}^{(n)}:=I_{n \cdots 1} \text {. } \\
& Y_{j+1, j}^{(n)} \Longleftarrow Y_{j, j-1}^{(n)}
\end{aligned}
$$

Convenient shorthand notation: subtracelets

For a tracelet $T \in \mathscr{T}_{n}^{\mathbb{T}}$ of length $n \geqslant 1$, let symbols t_{j} for $1 \leqslant j \leqslant n$ denote j-th subtracelets of T, so that $T \equiv t_{n}\left|t_{n-1}\right| \ldots \mid t_{1}$ is a concatenation of its subtracelets, with

$$
t_{j}:=\downarrow_{\substack{(n)}}^{O_{j}^{(n)} \Longleftarrow I_{j} \triangleleft \mathrm{c}_{I_{j}}} \prod_{j+1, j}^{r_{j}} \Longleftarrow Y_{j, j-1}^{(n)}, \quad Y_{n+1, n}^{(n)}:=O_{n \cdots 1}, Y_{1,0}^{(n)}:=I_{n \cdots 1}
$$

Corollary: tracelet surgery

Let $T \in \mathscr{T}_{n}^{\mathbb{T}}$ a \mathbb{T}-type tracelet of length n, so that $T \equiv t_{n}|\ldots| t_{1}$. Then for any consecutive subtracelets $t_{j} \mid t_{j-1}$ in T, one may uniquely (up to isomorphisms) construct a diagram $t_{(j \mid j-1)}$ and a tracelet $T_{(j \mid j-1)}$ of length 2 as follows:

Corollary: tracelet surgery

Let $T \in \mathscr{T}_{n}^{\mathbb{T}}$ a \mathbb{T}-type tracelet of length n, so that $T \equiv t_{n}|\ldots| t_{1}$. Then for any consecutive subtracelets $t_{j} \mid t_{j-1}$ in T, one may uniquely (up to isomorphisms) construct a diagram $t_{(j \mid j-1)}$ and a tracelet $T_{(j \mid j-1)}$ of length 2 as follows:

Corollary: tracelet surgery

Let $T \in \mathscr{T}_{n}^{\mathbb{T}}$ a \mathbb{T}-type tracelet of length n, so that $T \equiv t_{n}|\ldots| t_{1}$. Then for any consecutive subtracelets $t_{j} \mid t_{j-1}$ in T, one may uniquely (up to isomorphisms) construct a diagram $t_{(j \mid j-1)}$ and a tracelet $T_{(j \mid j-1)}$ of length 2 as follows:

Corollary: tracelet surgery

Let $T \in \mathscr{T}_{n}^{\mathbb{T}}$ a \mathbb{T}-type tracelet of length n, so that $T \equiv t_{n}|\ldots| t_{1}$. Then for any consecutive subtracelets $t_{j} \mid t_{j-1}$ in T, one may uniquely (up to isomorphisms) construct a diagram $t_{(j \mid j-1)}$ and a tracelet $T_{(j \mid j-1)}$ of length 2 as follows:

$t_{(j \mid j-1)}:=\prod_{Y_{j+1, j}^{(n)} \Longleftarrow}^{O_{j \mid j-1} \longleftarrow Y_{j-1, j-2}^{(n)}}{ }^{I_{j \mid j-1} \triangleleft c_{I_{j \mid j-1}}}, \quad T_{(j \mid j-1)}:=T\left(r_{j}, \mathbf{c}_{I_{j}}\right)^{\mu} \iota_{\mathbb{T}} T\left(r_{j-1}, \mathbf{c}_{I_{j-1}}\right)$
Here, $\mu=\left(I_{j} \hookleftarrow M \hookrightarrow O_{j-1}\right)$ is the span of monomorphisms obtained by taking the pullback of the cospan $\left(I_{j} \hookrightarrow Y_{j, j-1}^{(n)} \hookleftarrow O_{j-1}\right)$, and this μ is always a \mathbb{T}-admissible match. By associativity of the tracelet composition, this extends to consecutive sequences $t_{j}|\ldots| t_{j-k}$ of subtracelets in T inducing diagrams $t_{(j|\ldots| j-k)}$ and tracelets of length $1 T_{(j|\ldots| j-k)}$, where for $k=0, t_{(j)}=t_{j}$ and $T_{(j)}=T\left(r_{j}, \mathbf{c}_{I_{j}}\right)$.

Tracelet abstraction equivalence

Two tracelets $T, T^{\prime} \in \mathscr{T}_{n}^{\mathbb{T}}$ of the same length $n \geqslant 1$ are defined to be abstraction equivalent, denoted $T \equiv_{A} T^{\prime}$, if there exist suitable isomorphisms on the objects in T in order to transform T into T^{\prime} (with transformations on morphisms induced by object isomorphisms).

Tracelet shift equivalence

Let $T, T^{\prime} \in \mathscr{T}_{n}^{\mathbb{T}}$ be two tracelets of the same length $n \geqslant 1$. If there exist subtracelets $t_{j}|\ldots| t_{j-k}$ and $t_{j}^{\prime}|\ldots| t_{j-k}^{\prime}$ such that
(i) the subtracelets have the same rule content (up to isomorphisms), i.e. there exists a permutation $\sigma \in S_{k}$ such that $\left[\left[T_{(p)}\right]\right] \cong\left[\left[T_{(\sigma(p)}^{\prime}\right]\right]$ for all $j-k \leqslant p \leqslant j$, and
(ii) the diagrams $t_{1}|\ldots| t_{(j|\ldots| j-k)}|\ldots| t_{n}$ and $t_{1}^{\prime}|\ldots| t_{(j|\ldots| j-k)}^{\prime}|\ldots| t_{n}^{\prime}$ are isomorphic, then T and T^{\prime} are defined to be shift equivalent, denoted $T \equiv_{S} T^{\prime}$. Extending \equiv_{S} by transitivity then yields an equivalence relation on $\mathscr{T}_{n}^{\mathbb{T}}$ for every $n \geqslant 1$.

An arena for static analysis: "pathways" in rewriting systems

- Let $\mathscr{R}=\left\{R_{j} \in \overline{\operatorname{Lin}}(\mathbf{C})\right\}_{j \in J}$ a (finite) set of rules with conditions over \mathbf{C}, which model the transitions of a rewriting system.
- We designate a rule $E \in \overline{\overline{\operatorname{Lin}}}(\mathbf{C})$ as modeling a "target event", i.e. E must be the last rule applied in the derivation traces we will study.
- Let moreover \equiv_{C} be an equivalence relation on derivation traces such as abstraction or shift equivalences, or combinations thereof.

An arena for static analysis: "pathways" in rewriting systems

- Let $\mathscr{R}=\left\{R_{j} \in \overline{\operatorname{Lin}}(\mathbf{C})\right\}_{j \in J}$ a (finite) set of rules with conditions over \mathbf{C}, which model the transitions of a rewriting system.
- We designate a rule $E \in \overline{\operatorname{Lin}}(\mathbf{C})$ as modeling a "target event", i.e. E must be the last rule applied in the derivation traces we will study.
- Let moreover \equiv_{C} be an equivalence relation on derivation traces such as abstraction or shift equivalences, or combinations thereof.

"Pathway generation" or "explanatory synthesis" problem

For the type- \mathbb{T} rewriting system based upon the set of rules \mathscr{R}, synthesize the maximally compressed derivation traces ending in an application of E such that " E cannot occur at an earlier position in a given trace". Here, compression refers to retaining only the smallest traces in a given \equiv_{C} equivalence class, while the last part of the statement needs to be made precise in a specific application (as it depends on the chosen framework).

Feature-driven Explanatory Traclet Analysis (FETA)

- \equiv_{C} - conjunction of tracelet abstraction and shift equivalences \equiv_{A} and \equiv_{S}
- For $T=t_{E}\left|t_{n}\right| \ldots \mid t_{1} \in \mathscr{T}_{n+1}^{\mathbb{T}}$ (with t_{E} containing the rule $E,\left[\left[T_{(E)}\right]\right] \cong E$), let $E<{ }_{C} T$ denote the following property: there exist no tracelets $T^{\prime} \in \mathscr{T}_{n+1}^{\mathbb{T}}$

$$
t_{E}\left|t_{n}\right| \ldots\left|t_{1} \equiv_{C} t_{n+1}^{\prime}\right| t_{n}^{\prime}|\ldots| t_{1}^{\prime} \quad \text { with }\left[\left[T_{(k)}^{\prime}\right]\right] \cong E \text { for an index } k<n+1
$$

\Rightarrow set of strongly compressed pathways $:=$ set of such tracelets modulo \equiv_{C}

Feature-driven Explanatory Traclet Analysis (FETA)

- \equiv_{C} - conjunction of tracelet abstraction and shift equivalences \equiv_{A} and \equiv_{S}
- For $T=t_{E}\left|t_{n}\right| \ldots \mid t_{1} \in \mathscr{T}_{n+1}^{\mathbb{T}}$ (with t_{E} containing the rule E, $\left[\left[T_{(E)}\right]\right] \cong E$), let $E \prec_{C} T$ denote the following property: there exist no tracelets $T^{\prime} \in \mathscr{T}_{n+1}^{\mathbb{T}}$

$$
t_{E}\left|t_{n}\right| \ldots\left|t_{1} \equiv \equiv_{C} t_{n+1}^{\prime}\right| t_{n}^{\prime}|\ldots| t_{1}^{\prime} \quad \text { with }\left[\left[T_{(k)}^{\prime}\right]\right] \cong E \text { for an index } k<n+1
$$

\Rightarrow set of strongly compressed pathways $:=$ set of such tracelets modulo \equiv_{C}

```
Algorithm 1: Feature-driven Explanatory Tracelet Analysis (FETA)
    Data: \(N_{\max } \geq 2 \leftarrow\) maximal length of tracelets to be generated
    \(T_{E}:=T(E) \leftarrow\) tracelet of length 1 associated to the rule \(E\)
    \(\mathrm{T}_{1}:=\left\{T\left(R_{j}\right) \mid j \in J\right\} \leftarrow\) set of tracelets of length 1 associated to the transitions
    Result: sets \(\mathrm{P}_{i}\left(i=2, \ldots, N_{\text {max }}\right)\) of strongly compressed pathways
    begin
        \(P_{1}:=\left\{T_{E}\right\} \leftarrow\) the only pathway of length 1 ;
        for \(2<n \leq N_{\max }\) do
            \(\operatorname{pre}_{n}:=\left\{P^{\mu} \angle_{\mathbb{T}} T \mid P \in \mathrm{P}_{n-1}, T \in \mathrm{~T}_{1}, \mu \in \mathrm{MT}_{P}^{\mathbb{T}}(T)\right\} ;\)
            \(\mathrm{P}_{n}:=\left\{T^{\prime} \in \operatorname{pre}_{n} \mid E \prec_{C} T^{\prime}\right\} / \equiv_{C} ;\)
        end
    end
```


Prototypical example: a rewriting system in FinGraph

Let $\mathbf{C}=$ FinGraph be the category of finite directed multigraphs. Let $\mathscr{R}=\{r\}$ be a one-element transition set (for a rule $r \in \operatorname{Lin}($ FinGraph) without conditions), and let $e_{1}, e_{2} \in \mathbf{L i n}($ FinGraph $)$ be two rules modeling alternative target events:

$$
r=\emptyset \quad i, \quad e_{1}=\ddagger!, \quad e_{2}=\emptyset!
$$

Prototypical example: a rewriting system in FinGraph

Let $\mathbf{C}=$ FinGraph be the category of finite directed multigraphs. Let $\mathscr{R}=\{r\}$ be a one-element transition set (for a rule $r \in \mathbf{L i n}($ FinGraph) without conditions), and let $e_{1}, e_{2} \in \mathbf{L i n}($ FinGraph $)$ be two rules modeling alternative target events:

$$
r=\emptyset \quad i, \quad e_{1}=\ddagger \quad i, e_{2}=\ddagger
$$

If we consider DPO-type rewriting, the FETA algorithm produces the following strongly compressed pathways for target event e_{1} and $n \geqslant 2$ (with light blue arrows indicating the relative overlap structure within the tracelets):

$$
\mathbf{P}_{n}=\left\{S_{n}\right\}, \quad S_{n}=t_{E} \underbrace{t_{r}|\ldots| t_{r}}_{(n-1) \text { times }}=\underbrace{}_{(n-1) \text { times }}
$$

Prototypical example: a rewriting system in FinGraph

Let $\mathbf{C}=$ FinGraph be the category of finite directed multigraphs. Let $\mathscr{R}=\{r\}$ be a one-element transition set (for a rule $r \in \operatorname{Lin}($ FinGraph) without conditions), and let $e_{1}, e_{2} \in \mathbf{L i n}($ FinGraph $)$ be two rules modeling alternative target events:

If we consider DPO-type rewriting, the FETA algorithm produces the following strongly compressed pathways for target event e_{1} and $n \geqslant 2$ (with light blue arrows indicating the relative overlap structure within the tracelets):

$$
\mathbf{P}_{n}=\left\{S_{n}\right\}, \quad S_{n}=t_{E} \underbrace{t_{r}|\ldots| t_{r}}_{(n-1) \text { times }}=\underbrace{\text { ! }}_{(n-1) \text { times }}
$$

For the target event e_{2} the algorithm detects no pathways \mathbb{P}_{n}^{\prime} for $n \geqslant 2$.

(a) Tracelets as (minimal) derivation traces.

(b) Tracelet generation (Definition 2.1).

(d) Tracelet analysis (Section 3).

Figure 2 Schematic overview of the tracelet and tracelet analysis framework.

Thank you！

笽＂A Time for Metabolism and Hormones＂．In：Research and Perspectives in Endocrine Interactions（2016）．
自 Nicolas Behr．＂Sesqui－Pushout Rewriting：Concurrency，Associativity and Rule Algebra Framework＂．In：arXiv preprint 1904.08357 （2019）．
自 Nicolas Behr．＂Tracelets and Tracelet Analysis Of Compositional Rewriting Systemss＂．In： arXiv preprint arXiv：1904．12829（2019）．
界 Nicolas Behr and Jean Krivine．＂Compositionality of Rewriting Rules with Conditions＂．In： arXiv preprint 1904.09322 （2019）．
䀚 Nicolas Behr and Pawel Sobocinski．＂Rule Algebras for Adhesive Categories＂．In：27th EACSL Annual Conference on Computer Science Logic（CSL 2018）．Ed．by Dan Ghica and Achim Jung．Vol．119．Leibniz International Proceedings in Informatics（LIPIcs）．Dagstuhl， Germany：Schloss Dagstuhl－Leibniz－Zentrum fuer Informatik，Sept．2018，11：1－11：21．
眘 Karsten Gabriel et al．＂Finitary \mathscr{M}－adhesive categories＂．In：Mathematical Structures in Computer Science 24.04 （June 2014）．

冒 Stephen Lack and Paweł Sobociński. "Adhesive and quasiadhesive categories". In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511-545.

