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Motivation 1: non-linear Double Pushout (DPO) rewriting
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Motivation 2: non-linear Sesqui-Pushout (SqPO) rewriting

¢

Corradini, A., et al.: Sesqui-Pushout Rewriting. In: Graph Transformations. LNCS,
vol. 4178, pp. 30-45. Springer Berlin Heidelberg (2006)
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Motivation 2: non-linear Sesqui-Pushout (SqPO) rewriting
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Motivation 3: quasi-topoi and “natural” simple graph rewriting

simple graphs as a “bona fide” rewriting semantics

= requires the theory of quasi-topoi and of non-linear SqQPO-semantics
to be of any practical interest...
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Plan of the talk

1. Quasi-topoi in rewriting theory
2. Prerequisites for non-linear rewriting
3. Non-linear DPO rewriting
4. Non-linear SqPO rewriting
5. Conclusion and outlook
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Quasi-topoi — a natural setting for non-linear rewriting

Definition

A category C Is a quasi-topos Ift
1. 1t has finite limits and colimits
2. 1t is locally Cartesian closed

3. It has a regular-subobject-classifier.

Johnstone, P.T., Lack, S., Sobocinski, P.: Quasitoposes, Quasiadhesive Categories
and Artin Glueing. In: Algebra and Coalgebra in Computer Science. LNCS,
vol. 4624, pp. 312-326 (2007). https://doi.org/10.1007 /978-3-540-73859-6_21
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Quasi-topoi — a natural setting for non-linear rewriting

Proposition

—very quasi-topos C enjoys the following properties:

e |t has (by definition) a stable system of monics M = rm(C) (the class of regular monos),
which coincides with the class of extremal monomorphisms, i.e., if m =foeform € rm(C)

and e € epi(C), then e € iso(C).

* |t has (by definition) a M-partial map classifier (T, n).

e |t is rm-quasi-adhesive, I.e., it has pushouts along regular monomorphisms, these are sta-

ble under pullbacks, and pushouts along regular
e |tis M-adhesive.

e [or all pairs of composable morphisms A L Bar

monos are pullbacks.

d B — Cwith m € M, there exists a final

pullback-complement (FPC) A = F = C, and wit

nn & M.

® |t possesses an epi-M-factorization: each morphism A ! Bfactors as f = m o e, wWith
morphisms A = B in epi(C) and B = A in M (uniquely up to isomorphism in B).
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Quasi-topoi — a natural setting for non-linear rewriting

Definition
The category Graph of directed multigraphs is defined as the presheaf category

Graph := (G°®» — Set), where G := (- =2 %) is a category with two objects and
two morphisms.

e Objects G = (Vg, Eg,sg,tg) of Graph are given by a set of vertices Vg,
a set of directed edges E¢ and the source and target functions s¢, tg :

EG %V(;.

* Morphisms between G, H € obj(Graph) are of the form ¢ = (v, ©g), with
ov : Vg — Vy and g : Eg — Ex such that ¢y o sg = sy o g and

pv o tg = TH © YE.
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Quasi-topoi — a natural setting for non-linear rewriting

Definition

The category SGraph of directed simple graphs is defined as the category of bi-
nary relations BRel = Set / A. Here, A : Set — Set is the pullback-preserving
diagonal functor defined via AX := X x X, and Set / A denotes the full subcat-
egory of the slice category Set/A defined via restriction to objects m : X — AX
that are monomorphisms.

 An object of SGraph is given by S = (V, E, ), where V is a set of vertices,
E Is a set of directed edges, and where + : E — V x V Is an injective
function.

e A morphism f = (fy, fg) between objects S and S’ is a pair of functions
f\/:V%V/ ana fe : E — E’ such thatL/OfE — (f\/ va)OL.
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Quasi-topoi — a natural setting for non-linear rewriting
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Quasi-topoi — a natural setting for non-linear rewriting

— fr
E fr > B E \ E’
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Quasi-topoi — a natural setting for non-linear rewriting
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(M-) partial map

Definition

includes all isomorp

classifiers

~or a category C, a stable system of monics M is a class of monomorphisms of C that (i)

nisms, (ii) is stable under composition, and (iii) is stable under pullbacks

(i.e., if (f',m") is a pL

lback of (m,f) with m € M, then m" € M).We will reserve the notation —

for monics in M, and — for generic monics.

Corradini, A., et al.. AGREE — Algebraic Graph Rewriting with Controlled Em-
bedding. In: Graph Transformation (ICGT 2015). LNCS, vol. 9151, pp. 35-51.
Cham (2015). https://doi.org/10.1007/978-3-319-21145-9_3



(M-) partial map classifiers

Definition

—or a category C, a stable system of monics M is a class of monomorphisms of C that (i)
includes all isomorphisms, (ii) is stable under composition, and (iii) is stable under pullbacks
(i.e., if (f, m") is a pullback of (m, f) with m € M, then m" € M).We will reserve the notation -
for monics in M, and — for generic monics.

Definition

For a stable system of monics M in a category C, an M-partial map classifier (T, n) is a functor
T : C — C and a natural transtormation n : IDc — T such that

1. for all X € obj(C), nx : X = T(X) is in M

2. for each span (A +~ X 5 B) with m € M, there exists a unique morphism A pmb, T(B)
such that (m, f) is a pullback of (¢(m,f),ng).

Corradini, A., et al.. AGREE — Algebraic Graph Rewriting with Controlled Em-
bedding. In: Graph Transformation (ICGT 2015). LNCS, vol. 9151, pp. 35-51.
Cham (2015). https://doi.org/10.1007/978-3-319-21145-9_3



Final pullback complements (FPCs) via partial map classifiers

Universal property of final pullback complements (FPCs)

Given a commutative diagram as below, where (aox.y) is a pullback of
(d, c’), there exists a morphism Y — x/ — C that is unique up to isomor-
phisms, and which satisfies that (x,y) is the PB of (b, x).

aox/7 °
A / B
e |
! !
D <« c ¢ _
\ A I’
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Final pullback complements (FPCs) via partial map classifiers
Theorem

For a category C with M-partial map classifier A 5
(T,n), the final pullback complement (FPC) of / ”

a composable sequence of arrows A X Band
B = C with m € M is guaranteed to exist, and
IS constructed via the following algorithm:
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Final pullback complements (FPCs) via partial map classifiers

Theorem

For a category C with M-partial map classifier

(T,n), the final pullback complement (FPC) of A

a composable sequence of arrows A X Band
B = C with m € M is guaranteed to exist, and
IS constructed via the following algorithm:

1. Letm := ¢(m,idg) (i.e., the morphism that
exists by the universal property of (T,n),
cf. square (1) below).
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Theorem

For a category C with M-partial map classifier A 5
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IS constructed via the following algorithm:
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Final pullback complements (FPCs) via partial map classifiers

Theorem

For a category C with M-partial map classifier
(T,n), the final pullback complement (FPC) of

a composable sequence of arrows A X Band
B = C with m € M is guaranteed to exist, and
IS constructed via the following algorithm:

1. Letm := ¢(m,idg) (i.e., the morphism that

exists
cf. square (1
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Theorem
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1. Quasi-topoi in rewriting theory
3. Non-linear DPO rewriting
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(M-)multi-pushout-complements (MPOCs)

Definition

For a category C with an M-partial map classifier, the M-multi-pushout
complement (mPOC) P(f, b) of a composable sequence of morphisms

A —f> B and B 5 D with b € M Is defined as

P(f,b) :={(AZ P,P % D)cmor(C)?|ac MAh(d,b)=PO(a,f)}.

A f s B

|
a PO b

h

P d -- D,
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(M-)multi-pushout-complements (MPOCs)

Definition

For a category C with an M-partial map classifier, the M-multi-pushout
complement (mPOC) P(f, b) of a composable sequence of morphisms

A i B and B 3 D with b € M Is defined as

P(f,b) :={(AZ P,P % D)cmor(C)?|ac MAh(d,b)=PO(a,f)}.

Proposition

In a quasi-topos C and for M = rm(C) the class of regular monomor-
phisms, let P(f,b) be an mPOC.

e Universal property of P(f,b): for every diagram such as in (i)
where (1) + (2) is a pushout along an M-morphism n, and where
m = m’ o b for some m’, b € M, there exists an element (a, d) of
P(f,b) and an M-morphism p € M such that the diagram com-
mutes and (2) is a pushout. Moreover, for any p’ € M and for
any other element (a’,d’")of P(f, b) with the same property, there
exists anisomorphism § € iso(C) such that doa = a’ and d’od = d.
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(M-)multi-pushout-complements (MPOCs)

Definition

For a category C with an M-partial map classifier, the M-multi-pushout
complement (mPQOC) P(f, b) of a composable sequence of morphisms

A i B and B 3 D with b € M Is defined as

P(f,b) :={(AZ P,P % D)cmor(C)?|ac MAh(d,b)=PO(a,f)}.

Proposition

In a quasi-topos C and for M = rm(C) the class of regular monomor-
phisms, let P(f,b) be an mPOC.

o Algorithm to compute P(f, b):
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(M-)multi-pushout-complements (MPOCs)

Definition

For a category C with an M-partial map classifier, the M-multi-pushout
complement (mPQOC) P(f, b) of a composable sequence of morphisms

A i B and B i D with b € M Is defined as

P(f,b) :={(AZ P,P % D)cmor(C)?|ac MAh(d,b)=PO(a,f)}.

Proposition

In a quasi-topos C and for M = rm(C) the class of regular monomor-
phisms, let P(f,b) be an mPOC.

o Algorithm to compute P(f, b):
1. Construct (n, g) in diagram (ii) by taking the FPC of (f, b).
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(M-)multi-pushout-complements (MPOCs)

Definition

For a category C with an M-partial map classifier, the M-multi-pushout
complement (mPQOC) P(f, b) of a composable sequence of morphisms

A i B and B 3 D with b € M Is defined as

P(f,b) :={(AZ P,P % D)cmor(C)?|ac MAh(d,b)=PO(a,f)}.

Proposition

In a quasi-topos C and for M = rm(C) the class of regular monomor-
phisms, let P(f,b) be an mPOC.

o Algorithm to compute P(f, b):

1. Construct (n, g) in diagram (ii) by taking the FPC of (f, b).

2. For every pair of morphis

aop = n, take the pus
of pushouts induces a

OUl

ms (a,p) such that a € M and
(1), which by universal property

N ar

ow D = C;ife € iso(C), (a,d) is

a contribution to the mPOC of (f, b).
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Final pullback complement augmentations (FPA)

Definition

In a quasi-topos C with M = rm(C), consider a pushout square along an M-morphism
such as square (1) in the diagram on the right (where a, @ € M). We define an M-FPC
augmentation (FPA) of the pushout square (1) as a diagram formed from an epimor-
phism e € epi(C) and that satisfies the following properties:

e The morphism eo & is an M-morphism.
* (@,idg) is a pullback of (e,e o @).

e Square (1)+(2) is an FPC, and the induced morphism n that exists by the univer-
sal property of FPCs, here w.r.t. the FPC (noa,f) of (a,eoc @), is an M-morphism.

For a pushout as in (1), we denote by FPA(«, a) its class of FPAs:
FPA(a,a) :={(n,f,e)| ecepi(C)Neoca,ne MA(f,noa)=FPC(a,eoa)}

As induced by the properties of pushouts and of FPCs, FPAs are defined up to universal
isomorphisms (in D, E and F), and for a given pushout square there will in general exist
multiple non-isomorphic such augmentations.

Nicolas Behr, ICGT’21, June 24, 2021
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Final pullback complement augmentations (FPA)

Definition

In a quasi-topos C with M = rm(C), consider a pushout square along an M-morphism
such as square (1) in the diagram on the right (where a, @ € M). We define an M-FPC
augmentation (FPA) of the pushout square (1) as a diagram formed from an epimor-
phism e € epi(C) and that satisfies the following properties:

e The morphism eo & is an M-morphism.
® (@,idg) is a pullback of (e,e o @).

e Square (1)+(2) is an FPC, and the induced morphism n that exists by the univer-
sal property of FPCs, here w.r.t. the FPC (noa,f) of (a,eoc @), is an M-morphism.

For a pushout as in (1), we denote by FPA(«, a) its class of FPAs:
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Final pullback complement augmentations (FPA)

Definition

In a quasi-topos C with M = rm(C), consider a pushout square along an M-morphism
such as square (1) in the diagram on the right (where a, @ € M). We define an M-FPC
augmentation (FPA) of the pushout square (1) as a diagram formed from an epimor-
phism e € epi(C) and that satisfies the following properties:

e The morphism eo & is an M-morphism.
* (@,idg) is a pullback of (e,e o @).

e Square (1)+(2) is an FPC, and the induced morphism n that exists by the univer-
sal property of FPCs, here w.r.t. the FPC (noa,f) of (a,eoc @), is an M-morphism.

For a pushout as in (1), we denote by FPA(«, a) its class of FPAs:
FPA(a,a) :={(n,f,e)| ecepi(C)Neoca,ne MA(f,noa)=FPC(a,eoa)}

As induced by the properties of pushouts and of FPCs, FPAs are defined up to universal
isomorphisms (in D, E and F), and for a given pushout square there will in general exist
multiple non-isomorphic such augmentations.
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Final pullback complement augmentations (FPA)

Definition

In a quasi-topos C with M = rm(C), consider a pushout square along an M-morphism
such as square (1) in the diagram on the right (where a, @ € M). We define an M-FPC
augmentation (FPA) of the pushout square (1) as a diagram formed from an epimor-
phism e € epi(C) and that satisfies the following properties:

e The morphism eo & is an M-morphism.
* (@,idg) is a pullback of (e,e o @).

e Square (1)+(2) isan FPC, and the induced morphism n that exists by the univer-
sal property of FPCs, here w.r.t. the FPC (no a,f) of (a,eoc @), is an M-morphism.

For a pushout as in (1), we denote by FPA(«, a) its class of FPAs:
FPA(a,a) :={(n,f,e)| ecepi(C)Neoca,ne MA(f,noa)=FPC(a,eoa)}

As induced by the properties of pushouts and of FPCs, FPAs are defined up to universal
isomorphisms (in D, E and F), and for a given pushout square there will in general exist
multiple non-isomorphic such augmentations.
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Final pullback complement augmentations (FPA)

Definition

In a quasi-topos C with M = rm(C), consider a pushout square along an M-morphism
such as square (1) in the diagram on the right (where a, @ € M). We define an M-FPC
augmentation (FPA) of the pushout square (1) as a diagram formed from an epimor-
phism e € epi(C) and that satisfies the following properties:

e The morphism eo & is an M-morphism.
* (@,idg) is a pullback of (e,e o @).

e Square (1)+(2) is an FPC, and the induced morphism n that exists by the univer-
sal property of FPCs, here w.r.t. the FPC (noa,f) of (a,eoc @), is an M-morphism.

For a pushout as in (1), we denote by FPA(«, a) its class of FPAs:
FPA(a,a) :={(n,f,e)| ecepi(C)Neoca,ne MA(f,noa)=FPC(a,eoa)}

As induced by the properties of pushouts and of FPCs, FPAs are defined up to universal
isomorphisms (in D, E and F), and for a given pushout square there will in general exist
multiple non-isomorphic such augmentations.
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Example: directed simple vs. directed multi-graphs

® O / @
A B

©_<_

C
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Example: directed simple vs. directed multi-graphs

® O I | @
A B
nB
 /
Qg - ®
. PB (1)
;
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Example: directed simple vs

. directed multi-graphs

® O / . @
) A B
A nNB
\ J
Qg - ®
m PB (1)
i
% T(f) ] @ ) nB ©
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Example: directed simple vs. directed multi-graphs

® O | @
4
A
; \/
POC 4 @~
@ -0
FPC: '
n PB(@2) m:
;

B
- O
PB (1)
O
nB
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Example: directed simple vs. directed multi-graphs

® O
A

i
A "
Vo
@ OPoC
FPC:
n PB(@2) ™
v

B
- O
PB (1)
O
nB
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Example: directed simple vs. directed multi-graphs

® O @
A B
\ POC
- QO

na D p B

; POC |

.\p ¢ 9 ,Og > T ¢ @

FPC:

i PB(2) ™ PB (1)

;
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Example: directed simple vs. directed multi-graphs

® O | @ ® O
A B A
E\poc E\POC
B N
na » p B N4 B
; "OC | FPC Vr
POC m m
Qﬂ p J . O_g < ( O K p ' <
FPC: 5 g
L PB(@2) ™ PB (1) " PB() ™ PB(1)
v \/
% () C@’EO s 1 ® g g ST
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Multi-sums

Definition

n a quasi-topos C, the multi-sum ) _ , (A, B) of two ob-
jects A, B € obj(C) is defined as a family of cospans of

regular monomorphisms A 22 Y &2 B with the follow-

ing universal property: for every cospan A = 7 LB

with a,

b € rm(C), there exists an element A 22> Y <= B

in > .,(A,B) and a regular monomorphism Y — Z

sucht
as we

nata = moya and b = moyg, and moreover (f, g)

| as m are unigue up to universal isomorphisms.

Nicolas Behr, ICGT’21, June 24, 2021

YA

YB




Multi-sums

Lemma A

f C is a quasi-topos, the multi-sum ) ,,(A, B) arises
from the epi-M-factorization of C (for M = rm(C)).

inB

e Existence: Let A ™5 A + B <{"® B be the disjoint

union of A and B. Then for any cospan A 2 Z &

B with a,b € M, the epi-M-factorization of the
[a,b]

induced arrow A + B > / INnt0 an epimorphism
A+ B = Y and an M-morphism Y — Z vields
a cospan (ya = eoina,yg = e oing), which by
the decomposition property of M-morphisms is a
cospan of M-morphisms.
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Multi-sums

Lemma

f C is a quasi-topos, the multi-sum ) ,,(A, B) arises
from the epi- M-factorization of C (for M = rm(C)).

inB

e Existence: Let A ™5 A + B <{"® B be the disjoint

union of A and B. Then for any cospan A 2 Z &

B with a,b € M, the epi-M-factorization of the

induced arrow A+ B [a’b]> / Into an epimorphism

A+ B = Y and an M-morphism Y — Z vields
a cospan (ya = eoina,yg = e oing), which by
the decomposition property of M-morphisms is a
cospan of M-morphisms.

e Construction: For objects A, B € obj(C), every el-
ement A % Q <= Bin Y ,,(A,B) is obtained
from a pushout of some span A <& X =2 B

with xa,xg € M and a morphism P = Q in
mono(C) N epi(C).
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Multi-sums

Lemma

f C is a quasi-topos, the multi-sum ) ,,(A, B) arises

inB

e Existence: Let A ™5 A + B <{"® B be the disjoint

union of A and B. Then for any cospan A 2 Z &

B with a,b € M, the epi-M-factorization of the
[a,b]

induced arrow A + B > / INnt0 an epimorphism
A+ B = Y and an M-morphism Y — Z vields
a cospan (ya = eoina,yg = e oing), which by
the decomposition property of M-morphisms is a
cospan of M-morphisms.

e Construction: For objects A, B € obj(C), every el-
ement A % Q <= Bin Y ,,(A,B) is obtained
from a pushout of some span A <& X =2 B

with xa,xg € M and a morphism P = Q in
mono(C) N epi(C).
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Multi-sums

Lemma / T \

f C is a quasi-topos, the multi-sum ) ,,(A, B) arises &
from the epi-M-factorization of C (for M = rm(C)). /
e Existence: Let A ™5 A + B <{"® B be the disjoint

union of A and B. Then for any cospan A 2 Z &

B with a,b € M, the epi-M-factorization of the

nduced arrow A - B 2"

A + B = Y and an M-morphism Y — Z vyields pA\

b
i
a cospan (ya = eoina,yg = eoing), which by o / e
the decomposition property of M-morphisms is a N
cospan of M-morphisms. &
q
e Construction: For objects A, B € obj(C), every el- XY 0
ement A % Q <= Bin Y ,,(A,B) is obtained

from a pushout of some span A <& X =2 B

with xa,xg € M and a morphism P = Q in
mono(C) N epi(C).

> / INnt0 an epimorphism
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Multi-sums

Lemma

f C is a quasi-topos, the multi-sum ) ,,(A, B) arises

e Existence: Let A ™ A + B <" B be the disjoint

union of A and B. Then for any cospan A 2 Z &

B with a,b € M, the epi-M-factorization of the

induced arrow A+ B [a’b]> / Into an epimorphism

A+ B = Y and an M-morphism Y — Z vields
a cospan (ya = eoina,yg = e oing), which by
the decomposition property of M-morphisms is a
cospan of M-morphisms.

e Construction: For objectsA B € obj(C), every el-
ement A 5 Q <= Bin 3, (A, B) s obtained
from a pushout of some span A <& X =% B

with xa,xg € M and a morphism P -5 Q in
mono(C) N epi(C).
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Multi-sums in SGraph
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Plan of the talk

1. Quasi-topoi in rewriting theory
2. Prerequisites for non-linear rewriting

4. Non-linear SqPO rewriting
5. Conclusion and outlook
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Concurrent rule composition for non-linear DPO rewriting

Definition
General DPO-rewriting semantics over an rm-adhesive category C.

e The set of DPO-admissible matches of arule rule r = (O «+— K — 1) € span(C) into an object X € obj(C) is
defined as ) )
M?(X) :=={(m,m,i) | merm(C)A (m,i)eP(i,m)}.

A DPO-type direct derivation of X € obj(C) with rule r along m € M?©(X) is defined as a diagram in (i),
where (1) is the multi-POC element chosen as part of the data of the match, while (2) is formed as a

pushout.
O < 0 K i i

"
2) (1)
* m, choice of element of m, .
n pushout multi-pushout ()
complement
~N~ A ~
rm (X)) < o X ; > X
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Concurrent rule composition for non-linear DPO rewriting

e The set of DPO-type admissible matches of rules rp, r; € span(C) (also referred to as dependency relations)
IS defined as

M72(r1) == {(j2, 1,2, 12,1, 01) | (j2,j1) € Z (12,01) A (j2,i2) € Pliz2,j2) A (j1,01) € P(o1,i1)}/ ~

where equivalence is defined up to the compatible universal isomorphisms of multi-sums and multi-POCs.

02 < 02 Ko 12 > 1o " 01 <« 01 K4 11 > 14
MUuUIti-Suim

I* PO l \ ~ element / I PO I )

I l R ¢ -

(o1 +— 02 FQ 19 01 Fl i1 > [oq
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Concurrent rule composition for non-linear DPO rewriting

e The set of DPO-type admissible matches of rules rp, r; € span(C) (also referred to as dependency relations)

IS defined as

M72(r1) == {(j2, 1,2, 12,1, 01) | (j2,j1) € Z (12,01) A (j2,i2) € Pliz2,j2) A (j1,01) € P(o1,i1)}/ ~

where equivalence is defined up to the compatible universal isomorphisms of multi-sums and multi-POCs.

Os < 02 K5 12 > 1o O] +—o1

SRS, 4
| é \ /

021 < 02

o A DPO-type rule composition of two general rules ry, r, € span(C) along an ac

s defined via a diagram as in (ii), where (1) and (1) are the multi-

K1

|

J1

|

K,

POC e

of the match, while (2,) and (2;) are pushouts. We then define th

[ ﬁ .= (021 <— ?2 — JQl) O (J21 <— ?1 — 121)

Nicolas Behr, ICGT’21, June 24, 2021
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Concurreny theorem for non-linear DPO rewriting

Theorem

Let C be an rm-adhesive category, let Xqg € obj(C) be an object, and let rp,r; € span(C) be
(generic) spans in C.

* Synthesis: For every pair of admissible matches m; € M (Xo) and my € M7°(ry,,. (Xo)),
there exist an admissible match © € M2 (r;) and an admissible match my; € M27°(Xp)

r2 ra1

(for ro1 the composite of ry with r; along 1) such that M2, (Xg) = 2, (r1ml (Xo)).

* Analysis: For every pair of admissible matches y € M2 (r1) and my; € M2 (Xp) (for

r2 r21

ro1 the composite of r, with r; along u), there exists a pair of admissible matches m; &
MrDl'DO(X()) and Mo & Mrs2qPO(r1m1 (Xo)) such that r2m2 (rlml (XO)) — r21m21 (Xo)

o Compatibility: If in addition C is finitary, the sets of pairs of matches (my, m>) and (u, moy)
are iIsomorphic if they are suitably quotiented by universal isomorphisms, i.e., by universal
iIsomorphisms of X; = s (Xo) and X, = 2, (X1) for the set of pairs of matches (my, my),
and by the universal isomorphisms of multi-sums and multi-POCs for the set of pairs of
matches (i, my1), respectively.
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Proof of the synthesis part

Oy <—o2

X2 — 1

Ko
e

io — 1o
J2 \ /Jl
Y mq
|
3! jo1
|
~-
T1 > X1 To
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Proof of the synthesis part

Oy — o2 Ko io — Io )1 ¢—o1 K4 in— 14
mo mo FQ \ ? ng < / Fl m1 mi
o T m>i<
PB 7121 PB
(12) | (11)
Xy — 71 X, z1 > X4 Zo X0 zo — X
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Proof of the synthesis part

02 < 02

/ | N\ e
(22) j2 J1 (21)
4 NS
\ - Ko N > Joq <
. {

< T1
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Proof of the synthesis part

in— 14

Oy <—o02

/5* \

Xo +— T3
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Proof of the analysis part

io — 1o ()1 <——o1

02 <— 02
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Proof of the analysis part

io — 1o O] o1

Oy <— 02

\ AN
(132)

Nicolas Behr, ICGT’21, June 24, 2021



Plan of the talk

1. Quasi-topoi in rewriting theory
2. Prerequisites for non-linear rewriting
3. Non-linear DPO rewriting

5. Conclusion and outlook
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Concurrent rule composition for non-linear SqPO rewriting

Definition

General SqPO-rewriting semantics over a quasi-topos C:

 The set of SqQPO-admissible matches of a rule rule r = (O < K — 1) € span(C) into an object X € obj(C) is

defined as

Mo (X)) := {I =5 X | m € rm(C)}.

A SgPO-type direct derivation of X € obj(C) with rule r along m € M>°(X) is defined as a diagram in (i),
where (1) is formed as an FPC, while (2) is formed as a pushouit.

O <

O

(2)

m” pushout
'
rm (X)) < 5

K

Y

Tr

h

X

i > [
Ve
(1)
final pullback g
complement
h

> X

Nol
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Concurrent rule composition for non-linear SqPO rewriting

* The set of SqQPO-type admissible matches of rules r,, r; € span(C) (also referred to in the literature as depen-
dency relations) is defined as

MO (r1) = {(j2,J1,J1, 01, j1s 115 t21) | (2, J1) € Z (12, 01) A (ji,01) € P(o1,j1) A (J1, i1, t21) € FPA(j1,i1)}/ ~

where equivalence is defined up to the compatible universal isomorphisms of multi-sums, multi-POCs and
FPAs (see below).



Concurrent rule composition for non-linear SqPO rewriting

* The set of SqQPO-type admissible matches of rules r,, r; € span(C) (also referred to in the literature as depen-
dency relations) is defined as

MO (r1) = {(j2,J1,J1, 01, j1s 115 t21) | (2, J1) € Z (12, 01) A (ji,01) € P(o1,j1) A (J1, i1, t21) € FPA(j1,i1)}/ ~

where equivalence is defined up to the compatible universal isomorphisms of multi-sums, multi-POCs and
FPAs (see below).
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Jo (22) J2 (12) J2 J1 (11) J1 (21) J1
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Concurrent rule composition for non-linear SqPO rewriting

* The set of SqQPO-type admissible matches of rules r,, r; € span(C) (also referred to in the literature as depen-
dency relations) is defined as

MO (r1) = {(j2,J1,J1, 01, j1s 115 t21) | (2, J1) € Z (12, 01) A (ji,01) € P(o1,j1) A (J1, i1, t21) € FPA(j1,i1)}/ ~

where equivalence is defined up to the compatible universal isomorphisms of multi-sums, multi-POCs and

FPAs (see below).
FPA

K4 1 > 14

Oy +— o2 Ko 12 > 1o

multi-sum
i \ element i
Jo (22) J2 (12) J2 J1 (11) J1 (21) J1

PO | FPC \ / mPOC | PO

021 < 02

Ko 19 > Jo1 4 01 K i1 > [o91



Concurrent rule composition for non-linear SqPO rewriting

* The set of SqQPO-type admissible matches of rules r,, r; € span(C) (also referred to in the literature as depen-
dency relations) is defined as

MO (r1) = {(j2,J1,J1, 01, j1s 115 t21) | (2, J1) € Z (12, 01) A (ji,01) € P(o1,j1) A (J1, i1, t21) € FPA(j1,i1)}/ ~

where equivalence is defined up to the compatible universal isomorphisms of multi-sums, multi-POCs and
FPAs (see below).

FPA

—— 02 K i i O] +——o1 K i 1

0\,2 \,2 ’ 2 multi-sum ! \,1 ' ;

i \ element i
Jo (22) J2 (12) J2 J1 (11) J1 (21) J1
PO | FPC A mPOC | PO

021 < 02 FQ 19 > J21 < 01 Fl i1 s 121
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Concurrent rule composition for non-linear SqPO rewriting

* The set of SqQPO-type admissible matches of rules r,, r; € span(C) (also referred to in the literature as depen-
dency relations) is defined as

MO (r1) = {(j2,J1,J1, 01, j1s 115 t21) | (2, J1) € Z (12, 01) A (ji,01) € P(o1,j1) A (J1, i1, t21) € FPA(j1,i1)}/ ~

where equivalence is defined up to the compatible universal isomorphisms of multi-sums, multi-POCs and
FPAs (see below).

FPA
K4 1 > 14

Oy +— o2 K5 12 > I . O] +—o1

multi-sum
) \ element )
Jo (22) J2 (12) J2 J1 (11) J1 (21) 71

PO | FPC \ / mPOC | PO

021 < 02 F 19 > J21 < 01 Fl i1 s 121
Loy (6) j2 (5) J21 (4)

PO l FPC ! PO
521 —— 0o K io > j21 < 01

* An SqPO-type rule composition of two general rules ry, ro € span(C) along an admissible match 1 € M;%°(rq)
is defined via a diagram as in (ii), where (going column-wise from the left) squares (2,), (6), and (4) are
pushouts, (17) is the multi-POC element specified as part of the data of the match, (2;) and (3) form an FPA-

diagram as per the data of the match, and finally (1,) and (5) are FPCs. We then define the composite rule
via span composition:

[ gf = (521 <— ?2 — 721) O (721 <— ?1 — 721)



Concurrent rule composition for non-linear SqPO rewriting

/[ ‘ \
0 | EPC \ / PO | FPC

/
] ,{
RN B . S S
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Concurrent rule composition for non-linear SqPO rewriting

/ \ s

i, / o

|
/
g e — oA,

determine the multi-sum element J,, (uniquely up to universal isomorphisms)
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Concurrent rule composition for non-linear SqPO rewriting

80; (32) U/z (12) >12 i 01&4(11) 8?21 (31) ] o1
(\PO [\:PC [ \ / \ PO/ PO/
K> K, I21

N
e
/ ”\\ |

g 2@0 X

Take pullbacks to obtain squares (2,) and (2,) ...
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Concurrent rule composition for non-linear SqPO rewriting

?024 (32) O/Z (12) ”i%i\ 01&4(11) %ﬁl (31) >Q:%
\:o FPC / \ Po/Kl Pf?l/
AT—.

e AR
/ ”\\ 7]

g f@c X

Take pullbacks to obtain squares (2,) and (2,) ...

.. then pushouts to obtain squares (3,) and (3/) ...

Nicolas Behr, ICGT’21, June 24, 2021



Concurrent rule composition for non-linear SqPO rewriting

?024 (32) O/Z (12) ”i%i\ 01204(11) %ﬁl (31) >O"+%
SPo [ / \ VA VA
i

I 7 YauRam
/ ”\\ / -\

g f@ X

Take pullbacks to obtain squares (2,) and (2,) ...

.. then pushouts to obtain squares (3,) and (3/) ...
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Concurrent rule composition for non-linear SqPO rewriting

I/
» TR
K, I,
T—"

L

E

XOX VI X,
o oM

... BUT I, = X, is not a monomorphism ...

...and the square marked ?! Is neither a pushout, FPC nor a pullback!
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Concurrent rule composition for non-linear SqPO rewriting

8 < O/Q >
0,
T

&

06"

|

‘\/\

<

O
(11) Cj{ii

.
PO
K

f@%m

L

(31)
PO

@@2

v
70 E z

> OO

pi

Resolution: form the epi-regular mono-factorization of /,; — X,
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Concurrent rule composition for non-linear SqPO rewriting
S - -

o
0 @) TR () IG?I TR
TENSEE]

<15

— 2
\@i
bx

... then take -
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Concurrent rule composition for non-linear SqPO rewriting

O
~—~
o
[\
~—
5
~—~
p—t
[\V)
~—

... then take a pullback, resulting in two FPC squares.

Nicolas Behr, ICGT’21, June 24, 2021



Concurrent rule composition for non-linear SqPO rewriting

... then take a pushout,
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Concurrent rule composition for non-linear SqPO rewriting

... then take a pushout, a ,
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Concurrent rule composition for non-linear SqPO rewriting

... then take a pushout, a ,and a pushout...
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Concurrent rule composition for non-linear SqPO rewriting

o

<(11) ; (31) -
o/

721

(41)
PB
v

Xo\ X,
oy o,




Concurrent rule composition for non-linear SqPO rewriting

- S/D » O-O
1 jKl (31) v hh
PO /
ij . 121 %
721

(47)
PB
\

Xo\ X,
o]y o,




Concurreny theorem for non-linear SqQPO rewriting

Let C be a quasi-topos, let Xy € obj(C) be an object, and let ry, r; € span(C) be two (generic)

rewriting rules.

1. Synthesis:
MP7(r1,,, (Xo)), there exist an admissib

-or every pair of admissible matches mj
e match p € My (r1) and an admissible match

c M°(Xp) and my €

Mo € I\/Ifgfo( o) (for ra; the composite of rp with ry along ) such that ra; (Xo) =
20, (M1, (X0)).
2. Analysis: For every pair of admissible matches p € M;#°(r1) and mo; € M#°(Xo) (for

ro; the composite of r, with r; along ),

MP°(Xo) and mp € MP7°(rq,

there exists a pair of admissible matches m; &€
(XO)) such that M2, (rlml (Xo)) = (211, (XO)

3. Compatibility: If in addition C is finitary, i.e., if for every object of C there exist only finitely

many regular subobjects up to

sorrorphlsms the sets of

pairs of matches (my, my) and

(4, moy) are isomorphic if tﬂey are suitably quotiented by universal isomorphisms, I.e., by

universal iIsomorphisms of

pairs (u, moy), respectively.

Xl — rlml (XO) anad Xy = r2m2 (Xl) for the set of palrS (ml, m2)
and by the universal isomorphisms of multi-sums, multi-POCs and FPAs for the set of
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Plan of the talk

1. Quasi-topoi in rewriting theory

2. Prerequisites for non-linear rewriting
3. Non-linear DPO rewriting
4. Non-linear SqPO rewriting
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Conclusion

- We have introduced a new “compositional” theory for non-linear DPO-
and SgPO-type rewriting with completely generic rules over quasi-topol.

- Somewhat surprisingly, quasi-topoi pose a very natural setting for both types
of semantics, admitting without additional axioms the crucial constructions of

multi-sums, multi-pushout complements and FPC pushout
augmentations.

- “Compositionality” refers to the existence of suitable concurrency
theorems, which for the case of DPO rewriting requires the underlying
category to be regular-mono-adhesive.

Nicolas Behr, ICGT’21, June 24, 2021



Outlook

Investigate the associativity of rule compositions, which if it were to hold
would permit to formulate rule algebras and tracelets in order to utilize non-
inear rewriting theory for CTMCs, enumerative graph combinatorics, network
theory and modeling, ....

s it strictly necessary for the case of non-linear DPO-type rewriting to be
formulated over a rm-adhesive category, or could this requirement be
relaxed to quasi-topoi as in the case of non-linear SqPO-type rewriting”

Nicolas Behr, ICGT’21, June 24, 2021
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