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Organic chemistry via DPO-type rewriting (!)
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non-linear Double Pushout (DPO) rewriting
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non-linear Sesqui-Pushout (SqPO) rewriting
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non-linear Sesqui-Pushout (SqPO) rewriting

T

v —— I,
N
© © \\O

L

Corradini, A., et al.: Sesqui-Pushout Rewriting. In: Graph Transformations. LNCS, ﬂ

vol. 4178, pp. 30-45. Springer Berlin Heidelberg (2006)

Nicolas Behr, Topos Institute Colloquium, June 9, 2022



Cytokines
e.g., EPC)

| -
(@]
R
§
" nl.:'
SO
lE
.5
=
O

Chemokines,

Hormones,
Survival Factors Transmitters Growth Factors
(e.g., IGF1) (e.g. interleukins, (e.g. TGFa, EGF) Ext'r;lce!lular
. atrix
l serotonin, etc.) l 1

&

I :véw"&:}—!: &
| | UUY 1| Integrins
RTK RTK
Fyn/Shc /
PLC l Grb2/SOS |
PI3K = l G-Protein - Rfs - FAK D'Shel'e"ed - Gl
Src =S
V<l * 1 ™ Raf GSK-3f |
r * PKC Adenylate } -
cyclase genog
Akko \NFB | Mf “ N Aic Y
kB PKA" MEKK MAPK  MKK B-catenin
— JAKs —
S';AT3.5 ' TCF
Myc: —Mad:
Bel-xL e hiax ERK JNKs
| Jun
Cytochrome C \ ¢ [ -
Caspase 9

Gene Regulation =2

CyclE — p27
CDK2 .

f

N\
Caspase 8 ——»

p21

FA+DD Bcl-2 —*&
| Mt<— Bax
|m

Abnormalnty
Fas —
Death factors

S T g

Sensor

Nicolas Behr, Topos Institute Colloquium, June 9, 2022

source: Stochastic graph
rewriting and (executable)
knowledge representation for
molecular biology, J. Krivine
(lecture notes)



' Fyn/Sh
PLC l Grb2/SOS PINENE

PI3K <+—|—— G-Protein » Ras *+——
—
—_ At(t N 1] Rif
! P *ic Adenylate |
cyclase

Akka T o Y | MfK \

B P')“\ MEKK MAPK  MKK

| { ) |

Nicolas Behr, Topos Institute Colloquium, June 9, 2022

source: Stochastic graph
rewriting and (executable)
knowledge representation for
molecular biology, J. Krivine
(lecture notes)



Rewriting In the life sciences: bioinformatics

“Axin binds a region in the armadillo
repeat of 3-catenin, if B-catenin is
unphosphorylated at T41 and S29."

N ——— ————

.
Axin(CBD[.1),ctnnbl (arm1 [.],T41{u}[.],529{u}[.]) — & Kappa Language
Axin(CBD[11) ,ctnnbi (arm1[1],T41{u}[.],S29{u}[.1)

T — EE—

WV,

HOME NEWS ONLINE UI DOWNLOAD DOCUMENTATION KAPPASPHERE CONTACT PARTNERS

45 'GSK.Axn+' GSK(Axn),Axn(GSK) -> GSK(Axn!l),Axn(GSK!1l) @ 'Kon'{'pF'}

<
46 'GSK.Axn-' GSK(Axn!l),Axn(GSK!1l) -> GSK(Axn),Axn(GSK) @ 'Koff'
47
48 /* Binding rules for Cat and Axn. These guys bind through their
49 respective Axn and Cat sites. They can only bind if the site S of
50 Cat is in state 'x', i.e. unmodified. This means there is no
51 product inhibition in the system. As for the unbinding rule, it
52 happens regardless of the state of site 'S'.*/
22, 'Cat|x.Axn+' Cat(Axn,S-x),Axn(Cat) -> Cat(Axn!l,S~x),Axn(Cat!l) @
(et >
5= 'Cat|x.Axn-' Cat(Axn!l),Axn(Cat!l) -> Cat(Axn),Axn(Cat) € 'Koff'
- -
56 /* Recycling rules and mass conservation. The token 'CatGhost'’
57 is used to track the cumulative number of degradation events.
58 I can then obtain the rate of degradation.*/
59 'pP->S' Cat(Axn,S-p) -> Cat(Axn,S-x) | l:CatGhost € INF
[

60 'S->P' GSK(),Cat(S~-x) -> GSK(),Cat(S-p) € 0.0 {'Kcat'} G
61 'APC\' APC() -> @ 'r_APpC\'
62

f you are a frequent visitor, keep an eye on the —News.)

Welcome to Kappa

T —

source: The Kappa platform for rule-based
modeling, Boutillier, P.,, Maasha, M., Li, X,
Medina-Abarca, H.F., Krivine, J., Feret, J.,
Cristescu, |l., Forbes, A.G. and Fontana, W., 2018,
Bioinformatics, 34(13), pp.i583-i592.
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|V o o i o
Axin(CBD[1]) ,ctnnbl(armi[1],T41{u} ,529{u}[.]) source: The Kappa platform for rule-based
T —— - _ — — modeling, Boutillier, P.,, Maasha, M., Li, X,
> P2 ] N > G N Medina-Abarca, H.F., Krivine, J., Feret, J.,
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Kappa Language

A rule-based language for modeling interaction networks
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56 /* Recycling rules and mass conservation. The token 'CatGhost’

57 is used to track the cumulative number of degradation events.

58 I can then obtain the rate of degradation.*/
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Welcome to Kappa Medina-Abarca, H.F., Krivine, J., Feret, J.,
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“Axin binds a region in the armadillo
repeat of 3-catenin, if B-catenin is
unphosphorylated at T41 and S29."
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45 'GSK.Axn+' GSK(Axn),Axn(GSK) -> GSK(Axn!l),Axn(GSK!1l) @ 'Kon'{'pF'}
46 'GSK.Axn-' GSK(Axn!l),Axn(GSK!1l) -> GSK(Axn),Axn(GSK) @ 'Koff'

47

5

GSK
48 /* Binding rules for Cat and Axn. These guys bind through their Ky
49 respective Axn and Cat sites. They can only bind if the site S of
50 Cat is in state 'x', i.e. unmodified. This means there is no
51 product inhibition in the system. As for the unbinding rule, it
52 happens regardless of the state of site 'S'.*/
22, 'Cat|x.Axn+' Cat(Axn,S-x),Axn(Cat) -> Cat(Axn!l,S-x),Axn(Cat!l) @

°Kon’{'p1~"} Axn °
5= 'Cat|x.Axn-' Cat(Axn!l),Axn(Cat!l) -> Cat(Axn),Axn(Cat) €@ 'Koff'
-
56 /* Recycling rules and mass conservation. The token 'CatGhost’
57 is used to track the cumulative number of degradation events.
58 I can then obtain the rate of degradation.*/
59 'P->s' Cat(Axn,S-p) -> Cat(Axn,S-x) | l:CatGhost @ INF
oot
[

60 'S->P' GSK(),Cat(S-x) -> GSK(),Cat(S-p) € 0.0 {'Kcat'}
61 'APC\' APC() -> @ 'r_APC\'
62

If you are a frequent visitor, keep an eye on the —News.)

Welcome to Kappa

T ——

source: The Kappa platform for rule-based
modeling, Boutillier, P.,, Maasha, M., Li, X,
Medina-Abarca, H.F., Krivine, J., Feret, J.,
Cristescu, |l., Forbes, A.G. and Fontana, W., 2018,
Bioinformatics, 34(13), pp.i583-i592.
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input graph Xo
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“create an edge”
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‘create an edge”
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‘delete an edge’
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‘create an edge”
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‘create an edge”
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a TRACELET
(of length 5)
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a TRACELET
(of length 5)
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KEY CONC

o

Rule algebra formalism
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(01) w5 (0 1)

a basis vector

a rule
of a vector space K



(0 1) = 5(0+11)

d

a rule
of a vector space J}

Definition: the rule algebra product 1 : R X R — ‘R is defined via

(r2) *R (r1) = Z <r2 z r.I) “sum over ways to compose the rules”

MEMFQ (r1)



(0-1) = (01 1)

a basis vector

a rule
of a vector space R

Definition: the rule algebra product x1 : R X R — R is defined via

7!
5(r2) *R 5(r1) = Z 5 (r2 < r‘l) “sum over ways to compose the rules”

MEMFQ (r1)
— ), 2 y H y I
° o g \ / .
y r’ r’ -
¢ 021 . N21 ‘ |21

\ /

H . / /
ol :=l50r,




Physics Insignt: the rule algebra formalism

Definition: the rule algebra product x1 : R X R — R is defined via

(12) e 0(r1) = > 0 (ro )

MEMFZ (r1)

“sum over ways to compose the rules”

Theorem LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020

The rule algebra (R, *r) is an associative unital algebra,

with unit element /(o — O).

= a hew fundamental tool in rewriting theory, combinatorics
and concurrency theory
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Mathematics of chemical reactions

Example: 2X+—X (o €Rxp)
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Mathematics of chemical reactions

Example: 2X+—X (o €Rxp)
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Mathematics of chemical reactions

Example: 2X+—X (o €Rxp)
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Mathematics of chemical reactions

Example: 2X+—X (o €Rxp)

pn(t) == Pr(#X =nattimet) = ?
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Mathematics of chemical reactions

Example:

2X — X

pn(t) == Pr(#X =nattimet) = ?

(

c R-o)

-

Oy P(t;x) = [ (X%0x — R0y )

a linear operator...

T

Nicolas Behr, Topos Institute Colloquium, June 9, 2022

Max Delbriick (1906-1981)
1969 Nobel Prize laureate
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Mathematics of chemical reactions

Example: 2X+— X

ot P(t; X) =

c R-o)

-

(R0 — Xk

a linear operator...

T

0
n . Xn—1

fn=20
ifn>0

97 pn(t) = Pr(#X =nattimet) =7
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Max Delbriick (1906-1981)
1969 Nobel Prize laureate
(medicine and physiology)



Rule algebra framework (Part |l)

Observation: X" — basis vector (of the vector space of polynomials in x)
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Rule algebra framework (Part |l)

Observation: X" — basis vector (of the vector space of polynomials in x)

= analogous concept for rewriting theory:

|X> — basis vector (of a vector space of configurations C ,
e.g. graphs, trees, molecules, ....)
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Rule algebra framework (Part |l)

Observation: X" — basis vector (of the vector space of polynomials in x)

= analogous concept for rewriting theory:

|X> — basis vector (of a vector space of configurations C ,
e.g. graphs, trees, molecules, ....)

Example: |ﬂ> = |0 0> (here: configuration = iso-class of graph)

n vertices
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Rule algebra framework (Part |l)

Observation: X" — basis vector (of the vector space of polynomials in x)

= analogous concept for rewriting theory:

|X> — basis vector (of a vector space of configurations C ,
e.g. graphs, trees, molecules, ....)

Example: |ﬂ> = |0 0> (here: configuration = iso-class of graph)

n vertices

Key step: from rules to linear operators on é

O — |
p(00) [X) = ) [rm(X)) /
meM;(X)
“sum over all ways to apply r to X” rm (X) ‘

Nicolas Behr, Topos Institute Colloquium, June 9, 2022



Rule algebra framework (Part Il)  »(00) 1X) = > [rm(X))

Theorem LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020

p: R — End(C) is a representation of the rule algebra (R, *z), i.e.

p(0(r2)) p((r1)) IX) = p(d(r2) *r o(r1)) |X)
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Rule algebra framework (Part Il)  »(00) 1X) = > [rm(X))

Theorem LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020

p: R — End(C) is a representation of the rule algebra (R, *z), i.e.

p(0(r2)) p((r1)) IX) = p(d(r2) *r o(r1)) |X)

n) = Je..e) Example: <« X"
p(o(e = @))In) = [n+1) < X(x") = xM
0 ifn=0 0 ifn=0
g +— — ax " —
p (0 °)) ) {n-|n1> ifn>0 v >X7) {n-xn1 ifn>0
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Rule algebra framework (Part Il)  »(00) 1X) = > [rm(X))

Theorem LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020

p: R — End(C) is a representation of the rule algebra (R, *z), i.e.

p(0(r2)) p((r1)) IX) = p(d(r2) *r o(r1)) |X)

n) = Je..e) Example: <« X"
p(o(e = @))In) = [n+1) < X(x") = xM
0 ifn=0 0 ifn=0
g +— — ax " —
p (0 °)) ) {n-n1> ifn>0 v >X7) {n-xn1 ifn>0

Application to the case of the reaction 2X +— X (v € Rso)

(820, — %0y
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Rule algebra framework (Part Il)  »(00) 1X) = > [rm(X))

Theorem LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020

p: R — End(C) is a representation of the rule algebra (R, *z), i.e.

p(0(r2)) p((r1)) IX) = p(d(r2) *r o(r1)) |X)

n) = Je..e) Example: <« X"
p(o(e = 2))In) = [n+1) o x(xM) = x™
0 ifn=0 0 ifn=0
g +— — ax " —
p (0 °)) ) {n-n1> ifn>0 v >X7) {n-xn1 ifn>0

Application to the case of the reaction 2X +— X (v € Rso)

(p(0(e 0 =0)) —p(i(e=e))) & o (X0 —Rx)
= Delbruck’s evolution operator explained via rewriting theory!
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set of rules and input state (distribution)

Nicolas Behr, Topos Institute Colloquium, June 9, 2022



Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

continuous-time Markov chains

Rewriting theory for the life sciences: A unifying theory of
CTMC semantics ™

Nicolas Behr#*, Jean Krivine ¢, Jakob L. Andersen”, Daniel Merkle "

4 Institut de Recherche en Informatique Fondamentale, Universite de Paris, CNRS UMR 8243, 8 Place Aurelie Nemours, Paris Cedex 13, 75205,
France

b Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense M, 5230, Denmark

set of rules and input state (distribution)
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_ S discrete-time Markov chains
set of rules and Input state (distribution

Stochastic Graph Rewriting For Social Network Modeling

(a) Initial graph (u=0.5) (c) Fragmented graph

xi}f pick an edge
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_ S discrete-time Markov chains
set of rules and input state (distribution)

Stochastic Graph Rewriting For Social Network Modeling

combinatorics

(a) Initial graph (u=0.5) (b) Giant component (c) Fragmented graph

On Stochastic Rewriting and Combinatorics

via Rule-Algebraic Methods®

do nothing

Nicolas Behr

Université de Paris, CNRS, IRIF
F-75006, Paris, France

nicolas.behr@irif.fr
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Rewriting In the life sciences: bio- and chemo-informatics
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KAPPA

d Kappa Language

A rule-based language for modeling interaction networks

DOCUMENTATION

'GSK.Axn+' GSK(Axn),Axn(GSK) -> GSK(Axn!l),Axn(GSK!1l) @ 'Kon'{'pF'}
'GSK.Axn-' GSK(Axn!l),Axn(GSK!1l) -> GSK(Axn),Axn(GSK) @ 'Koff'

/* Binding rules for Cat and Axn. These guys bind through their
respective Axn and Cat sites. They can only bind if the site S of
Cat is in state 'x', i.e. unmodified. This means there is no
product inhibition in the system. As for the unbinding rule, it
happens regardless of the state of site 'S'.*/

m'{'pF'}
at|x.Axn-' Cat(Axn!l),Axn(Cat!l) -> Cat(Axn),Axn(Cat) € 'Koff'

H‘Cat]x.hxn+' Cat(Axn,S-x),Axn(Cat) -> Cat(Axn!l,S-x),Axn(Cat!l) @

/* Recycling rules and mass conservation. The token ‘'CatGhost’
is used to track the cumulative number of degradation events.
I can then obtain the rate of degradation.*/

'P->S' Cat(Axn,S-p) -> Cat(Axn,S-x) | l:CatGhost @ INF

'S->P' GSK(),Cat(S-x) -> GSK(),Cat(S-p) € 0.0 {'Kcat'}

'APC\' APC() -> @ 'r_APC\'

(If you are a frequent visitor, keep an eye on the —News.)

Welcome to Kappa

KAPPASPHERE

Axn

“Axin binds a region in the armadillo
repeat of B-catenin, if B-catenin is
unphosphorylated at T41 and 529"
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The foundation: "compositional" rewriting theory

for linear rules with conditions (DPO & SqPO)

Compositionality of Rewriting Rules with Conditions

Nicolas Behr and Jean Krivine

IRIF, Université Paris-Diderot (Paris 07), F-75013 Paris, France

We extend the notion of compositional associative rewriting as recently studied in
the rule algebra framework literature to the setting of rewriting rules with conditions.
Our methodology is category-theoretical in nature, where the definition of rule com-
position operations is encoding the non-deterministic sequential concurrent application
of rules in Double-Pushout (DPO) and Sesqui-Pushout (SqPO) rewriting with applica-
tion conditions based upon M-adhesive categories. We uncover an intricate interplay
between the category-theoretical concepts of conditions on rules and morphisms, the
compositionality and compatibility of certain shift and transport constructions for con-
ditions, and thirdly the property of associativity of the composition of rules.

{>° COMPOSITIONALITY

THE OPEN-ACCESS JOURNAL FOR THE MATHEMATICS OF COMPOSITION
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Logical Methods in Computer Science
Volume 16, Issue 3, 2020, pp. 3:1-3:45 Submitted May 03, 2019
https://Imcs.episciences.org/ Published  Jul. 10, 2020

COMBINATORIAL CONVERSION AND MOMENT BISIMULATION

FOR STOCHASTIC REWRITING SYSTEMS . o 0 . .
On Stochastic Rewriting and Combinatorics

NICOLAS BEHR ¢, VINCENT DANOS®. AND ILIAS GARNIER " via Rule- Algebraic Methods™

% IRIF, Université Paris-Diderot, F-75205 Paris Cedex 13, France
e-mail address, Corresponding author: nicolas.behr@irif.fr

Nicolas Behr

Université de Paris, CNRS, IRIF
F-75006, Paris, France

nicolas.behr@irif.fr

® Département d’Informatique de PENS, ENS, CNRS, PSL University Paris, France
e-mail address: {vincent.danos,ilias.garnier }@di.ens.fr

ABSTRACT. We develop a novel method to analyze the dynamics of stochastic rewriting
systems evolving over finitary adhesive, extensive categories. Our formalism is based on the

so-called rule algebra framework [4, 7] and exhibits an intimate relationship between the Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
combinatorics of the rewriting rules (as encoded in the rule algebra) and the dynamics which relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
these rules generate on observables (as encoded in the stochastic mechanics formalism). their embedded discrete-time Markov chains and certain types of generating function expressions in

We introduce the concept of combinatorial conversion, whereby under certain technical
conditions the evolution equation for (the exponential generating function of) the statistical
moments of observables can be expressed as the action of certain differential operators on o . .
formal power series. This permits us to formulate the novel concept of moment-bisimulation, rewriting systems via pattern-counting observables.
whereby two dynamical systems are compared in terms of their evolution of sets of ob-

servables that are in bijection. In particular, we exhibit non-trivial examples of graphical

rewriting systems that are moment-bisimilar to certain discrete rewriting systems (such

as branching processes or the larger class of stochastic chemical reaction systems). Our

results point towards applications of a vast number of existing well-established exact and

approximate analysis techniques developed for chemical reaction systems to the far richer

class of general stochastic rewriting systems.

combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
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Pattern count distributions for planar rooted binary trees
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Pattern count distributions for planar rooted binary trees
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Pattern count distributions for planar rooted binary trees

\<</ TE{I L.R}
G(A;0) = (|22, )

®-0 :=€0p+y0p) + 1LOpy + VOp3

24 (A;0) = | (eadw-O((;)> 202G |y ) ( (eadvop3 (eaduépz (eadeOE+y0P1 (é)>>) w016 |)
= Q2| (e VOp < )) eQ-QeM’}‘ }

_ 2t (e Ors ))eQ'QAewm

= 2T (| (G + eu—1)[épz,é]

+et(e¥ —1)[Op3, G] + (" — 1) (eF — e V)Rpy ) e2CeAC | |)
02,6 w+LVV+% KQ % = 277(| (205 +3(e" = 1)Op1 + (4" TV — 6el +2)0p
P2, — X - 1L - L =

+(3et + eV —3et TV — 1)0Ap3)eQ'QAe’lé 1)

= 2TV (| (255 +3(eH — 1) 5 + (4e Y — 6 +2) 2
+(3et eV —3et Y — 1)) e 0 AG|\>
[0P37G]

e
=
>
Q
o
E
Q

[0p2,[0p2,G]] = [0p2,G],  [0r2,[0p3,G]] = [Op3,G +Rp3
[0r3,[0p3, G = [Op3, G +2Rpy,  [Op2,Rp] =0,  [Op3,Rpy] = —Rpy
(|[0p2,G] = (| (30p1 —20p2), (|[0p3,G) = (|(40p2 —30p3), (|Rpy = (| Op3
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double categories (crDCs)

Explicit rewriting semantics (DPO, SgPoO, ...

organic chemistry
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Fibrational structures — traditional variants

Definition 1. A functor G : E — B 1s a Grothendieck fibration if the following property holds:

e e —yHh—> €
\4 (‘; : 3(‘; c‘;
ool !
b f > b b — =G+ b
) 3
Y G G G =+ G G G

g=G(B)

\ b/ \ b// N b/ \ b//
\G(a)/ \G(a’)/
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Fibrational structures — traditional variants

Definition 2. A functor G : E — B 1s a Grothendieck opfibration 1f the following property holds:

e e ef) —— €’
Y G . G G
~ ~ ~
b f > b’ b — f=G(f)) —> b’

/_a/
e e(f) —> e’h e’

G

~

\b’

\ G
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Fibrational structures — “multi” variants a la Diers

Definition 3. A functor M : E — B 1s a multi-opfibration if the following property holds:

(e gi(f) —> e;. )

e
VT/ = R M
b ——f—3 I b ME S b
L — [=M(g;(f)) > }].EJf-e

a
— \eu —Hg(f)%em

e
T ‘ (5)
Y M . M M
\l/ \l/ ~
b—"— U ¢ — b b ——r— b —
\ M(@) \ M@ /

AVkeJre: (e, —Pr = e :a=PLroe(f) N M(PBr) = g)
= 3l ¢, — ¢ — ¢, € iso(E) : s1(f) = ¢ 0 £;(f) A M(¢) = idy
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Fibrational structures — “multi” variants a la Diers

Corollary 1. Let M : E — B be a multi-opfibration. Then the following lifting property of 1somorphisms is satisfied.

a /—a,
. / \ o o £5(f) — e;‘m o'’

Y M Mo .Y M M Mo
i} i | | (6)
b / > b’ 8 b’ N b/ g=M(S;)
\ M(@) \ M@ /

(geisoB) = Bjeiso(E)) A(f €iso(B) = &i(f) € iso(E))
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Fibrational structures — “multi” variants a la Diers

Lemma 2 (Pullback-splitting lemma for multi-opfibrations). Letr E be a category that has pullbacks, and let M -
E — B be a multi-opfibration. Then the following property holds:

— —
—
— —
e,
e,
—

e — d&;(f) — 63- PB M

/ \ ) dejk(g1) T o
‘ € PN EPBJ—-\‘

Y | /g1 hl\ LM oV e]/ ’:’ \hl M (9)

'
b f—> b PB b’ g1 \
~__ , "
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Fibrational structures — “residual multi” variants

Definition 4. A functor R : E — B 1s a residual multi-opfibration 1t the following property holds:

( e p;(f) 5 e} )
. 4L R 3
g g
% b f > b’
! ’ \\%m'(f))—/ :
\ ! ) j€J fie
/ )
/“\ e pi(f) ye ——-p-—% "
e// ‘]
lR
Y R R

8

f—> b /; %
\R(a)

AN Ykedp,: (e, =P =€ :Bropi(f) =ang=RPB) o fk)

= Ale,—¢ — e, €iS0(E) : pr(f) = o pi(f/IAB; =Bk o d A fax = R(@) © fu;
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Fibrational structures — “residual multi” variants

Corollary 2. Let R : E — B be a residual multi-opfibration. Then residues have the following universal property:

Pj

Pj
/ \ e dpu(f) 5 m e’
/ k J
e e .
R

| |
YV R % © R > b, —_ I = Br € 1S0(C) A R(By) € 1so(B) (12)
N f*k R(,Bk)
b S b + e N
*f*jof/ b f\w /\7
f*jof

In particular, this property entails that if a residue f.i factorizes a residue fi; as f.; = R(By) o fxk for some B € K,
then the residues f,; and f,, (both of the same morphism f € B) are related by an isomorphism R(;) € 1so(B), as

are their liftings pi(f) = Br © pr(f) via Bx € 1SO(E).
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Multi-sums (a la Diers)

Definition 11. Let C be a category. A multi-sum ) (A, B) of two objects A and B of C1s a tamily of cospans {A-m; —
M; « n; — B} ey such that for every cospan A — f — X « g — B, there exists a j € J and morphism M; — x — X
such that f = x om; and g = x o n;, and with the following (multi-) universal property: tor every j, k € J such that
the corresponding multi-sum elements factor the cospan A — f — X <« g — B, there exists a unique 1somorphism
M; — ¢ — My such that x = x" o ¢:

STy (40)

We say that C has multi-sums if every pair of objects has a multi-sum.
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Multi-sums (a la Diers)

Lemma 6 (Multi-sum extension). Let C be a category that has multi-sums and that has pullbacks. Then for every
commutative diagram such as in (41) below, where A - M «— B and C — N <« D are multi-sum elements, there
exists a universal arrow M — N that makes the diagram commute.

A

D (41)
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Preliminaries: some notational conventions for double categories

ml

~

0/

~
O <

I/ /
S
m H m
i i

Figure 2: Convention for source and target functors for double categories.

Definition 12 (Cf. e.g. [50, 49, 51]). A double category (DC) D 1s a weakly internal category 1n the 2-category CAT

of all categories [52]'°.

In particular, this entails that a double category consists of a category Dy of objects and vertical morphisms, and
a category D of horizontal morphisms and squares of 1D, equipped with functors S, 7T : D; — Dy, referred to as
source and target functors, respectively (cf. Figure 2), and with a functor U : Dy — [D; which maps every object
A of Dy to a horizontal unit U, (depicted in Figure 3(d) as identity horizontal morphisms), and every morphism f
of Dy to a horizontal unit square Uy (depicted 1n Figure 3(d) as squares annotated with the symbol id _ for better
readability). We denote vertical morphisms by — and horizontal morphisms by <—, respectively. We denote by ¢,
the vertical composition of squares as in Figure 3(a) (1.e., the associative composition operation of [D;). D moreover
carries a weakly associative horizontal composition of squares (ct. Figure 3(b)) ¢, : D Xp, D; — ;. Finally, for
technical convenience, we assume without loss of generality!’ that both types of compositions are strictly unitary (cf.

Figures 3(c) and 3(d)).
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Preliminaries: some notational conventions for double categories

0, O < S I I
Y Y Y Y
¢! U
m’ m’ o m m
g g v g g
0/ 0/ ) I/ I’

Figure 2: Convention for source and target functors for double categories.

\—/
@ B
Vv aonf g
g N
/ - /

Z Y / / .

~ ~N ~N N Y Y Y Y \ Y / N
o} 0! Y a B J
A\ A\ N2 !

g g g g W v N v

v . L . - . 4 Il . . < . 4

' ' ' Bo,a ~
B b j (b) Horizontal composition ¢y.
\ 4 \ 4

v v ~N N

. 4 . . 4

(a) Vertical composition ©,,.
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compositional rewriting double categories (crDCs)
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Compositional rewriting double categories (crDCs)

Definition 13. A double category (DC) D 1s a compositional rewriting DC (crDC) 1if 1t has the following properties:

(1) Dy has multi-sums.

(11) Dy and 1Dy have pullbacks. (This entails in particular that for i € {1, 2}, ID; morphisms are stable under pullback,

and pullbacks in 1D; are effective, 1.e., for any span of [D; morphisms extending a pullback diagram in [;, the
unique mediating morphism 1s in D;.)

(111) Squares 1n D have the following horizontal decomposition property:

A 4 ) — 0 <4 r |:| A <2 ry o Z i |:|
Y @21 Y Y @21 '
v =
n Y m n m
rél /rél T T
$ / ‘\ 4 p \ 4
A | A |
(43)
/ i —\
A < ) — o < r L]
Y @21 Y ) . .y ,
v . dle > @ €iso(Dy) : m" =pom
n ' m
_— T T
~ / \ ~
A H

(1v) The source functor S : D1 — Dy 1s a multi-opfibration.

(v) The target functor 7 : D; — Dy 1s a residual multi-opfibration.
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Compositional rewriting double categories (crDCs)

Definition 13. A double category (DC)

(1)
(11)

and pullbacks in

Do has multi-sums.

)y and 1D have pullbacks. (This entails in particular that fori € {1, 2},

); are effective, 1.e., for any span of

unique mediating morphism 1s 1n [D;.)

); morphisms extending a pullback diagram in
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) 1s a compositional rewriting DC (crDC) 1t 1t has the following properties:

); morphisms are stable under pullback,

)ia the




Compositional rewriting double categories (crDCs)

(111) Squares 1n [D have the following horizontal decomposition property:

)/rm—\ )/rzl—\
A <4 ) — 0 4 r A L——1r — 0 £L——r
N @21 Y N @21 Y
v 3
n Y m n m
1 Ty T
g / \ v ~ / \ v
A | A |
(43)
)/rzl—\
N L——1 — 0 £L——
Y @21 ~ © . , ,
v . dle > @ ciso(Dy) : m" =¢pom
n A m
/rél T T
v / \ ~
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Compositional rewriting double categories (crDCs)

(iv) The source functor § : D; — Dy is a multi-opfibration.

(v) The target functor T : D; — Dy is a residual multi-opfibration.
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Compositional rewriting double categories (crDCs)

Definition 13. A double category (DC) D 1s a compositional rewriting DC (crDC) 1if 1t has the following properties:

(1) Dy has multi-sums.

(11) Dy and 1Dy have pullbacks. (This entails in particular that for i € {1, 2}, ID; morphisms are stable under pullback,

and pullbacks in 1D; are effective, 1.e., for any span of [D; morphisms extending a pullback diagram in [;, the
unique mediating morphism 1s in D;.)

(111) Squares 1n D have the following horizontal decomposition property:

A 4 ) — 0 <4 r |:| A <2 ry o Z i |:|
Y @21 Y Y @21 '
v =
n Y m n m
rél /rél T T
$ / ‘\ 4 p \ 4
A | A |
(43)
/ i —\
A < ) — o < r L]
Y @21 Y ) . .y ,
v . dle > @ €iso(Dy) : m" =pom
n ' m
_— T T
~ / \ ~
A H

(1v) The source functor S : D1 — Dy 1s a multi-opfibration.

(v) The target functor 7 : D; — Dy 1s a residual multi-opfibration.
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crDCs satisty a (universal!) Concurrency Theorem

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked % in the diagram on the right is a residue, and the cospan into its domain a multi-sum element. ):

22

Y

s 2 L2 . \,\82 181//

Y Y

\ TR R T

. A 1 .

& / N \ or / N (44)
~ ~
y ré’ . 2 ri’ .
B
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crDCs satisty a (universal!) Concurrency Theorem

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked * in the diagram on the right is a residue, and the cospan into its domain a multi-sum element. ):

R

Y Y
Y Y
\ / Loy
\ J (T Y (44)
2771
v o ¥, ” v
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crDCs satisty a (universal!) Concurrency Theorem

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked * in the diagram on the right is a residue, and the cospan into its domain a multi-sum element. ):

R

Y Y
VRS . 2 . \,\32 ,31//
Y Y
| I b
. A f .
&, / Y \ or! /\/ (44)
~ ~
Z r . 2 P .
B
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crDCs satisty a (universal!) Concurrency Theorem — PROOF

22 2
%) 03]

~ -

. / r// / r//

Proor. Synthesis part: Construct the diagram 1n (45) from the premise as follows:
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crDCs satisty a (universal!) Concurrency Theorem — PROOF

Al

Proor. Synthesis part: Construct the diagram 1n (45) from the premise as follows:

e Via the universal property of multi-sums, there exists a cospan of Dy-morphisms into an object {) and a mediat-
ing M-morphism  — -.
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crDCs satisty a (universal!) Concurrency Theorem — PROOF

IR

BRIy
L\ L
\ . f a{/ .
LW N/

Proor. Synthesis part: Construct the diagram 1n (45) from the premise as follows:

—

A\

e Via the universal property of multi-sums, there exists a cospan of Dy-morphisms into an object {) and a mediat-
ing M-morphism  — -.

e Since the target functor 7 : Dy — D is a residual multi-opfibration, there exists a residue ) — 4 (marked )
and an Dy-morphism ¢ — - such that a1 = ] ¢, B.
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crDCs satisty a (universal!) Concurrency Theorem — PROOF

r2 "

.

AN G /4]
\: SN T j
B, B
| LN ]

Proor. Synthesis part: Construct the diagram 1n (45) from the premise as follows:

e Via the universal property of multi-sums, there exists a cospan of Dy-morphisms into an object {) and a mediat-
ing M-morphism  — -.

e Since the target functor 7 : D; — DDy is a residual multi-opfibration, there exists a residue ¢ ~— 4 (marked *)
and an Dy-morphism ¢ — - such that a1 = ] ¢, B.

e Since the source functor § : D1 — Dy 1s a multi-opfibration, there exist direct derivations 8, and 3, such that
ay = 8, ¢, B>. Thus the claim follows by letting 5,1 := 8, ¢ .
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crDCs satisty a (universal!) Concurrency Theorem — PROOF

L2 2

Y Y

\ /

Proor. Synthesis part: Construct the diagram 1n (45) from the premise as follows:

e Via the universal property of multi-sums, there exists a cospan of Dy-morphisms into an object {) and a mediat-
ing M-morphism  — -.

e Since the target functor 7 : Dy — D is a residual multi-opfibration, there exists a residue ) — 4 (marked )
and an Dy-morphism ¢ — - such that a1 = ] ¢, B.

e Since the source functor § : D1 — Dy 1s a multi-opfibration, there exist direct derivations 8, and 3, such that
ay = 8, ¢, B>. Thus the claim follows by letting 5,1 := 8, ¢ .
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crDCs satisty a (universal!) Concurrency Theorem — PROOF

Analysis part: Construct the diagram 1n (46) as follows:
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crDCs satisty a (universal!) Concurrency Theorem — PROOF

. 2 Z .
N \\ // N
B2 B
~N ~N

J / J W
b 1
N N
S ,,éo,,i M
/ /
- T
U :
v ) P r{ v
) J 1 .

Analysis part: Construct the diagram 1n (46) as follows:

e By the horizontal decomposition property ot squares in D, there exist squares 3, and 8] such that 5, = g, ¢, 5.
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crDCs satisty a (universal!) Concurrency Theorem — PROOF

B2 Bi
I I
J , J ’”i )

Y Y '

| |

B, B

¥ ¥
~ ) N r ~N-

Analysis part: Construct the diagram 1n (46) as follows:

e By the horizontal decomposition property ot squares in D, there exist squares 3, and 8] such that 5, = g, ¢, 5.

e The claim follows be letting a; := 8} ¢, B; fori = 1, 2.
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crDCs satisty a (universal!) Concurrency Theorem — PROOF

Analysis part: Construct the diagram 1n (46) as follows:

e By the horizontal decomposition property ot squares in D, there exist squares 3, and 8] such that 5, = g, ¢, 5.

e The claim follows be letting a; := 8} ¢, B; fori = 1, 2.
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crDCs satisty a (universal!) Associativity Theorem (= Thm. 9 in FCRT)

Moreover, the equivalence is such that in addition

’/ 7 o~ L/ ’/



Cr

DCs satisty a (universal!) Associativity Theorem — P

23 2 "2
N N \\
0%9)
~N
a/g’ . %
/
Q21
v/ r//
3 \
144
"1

ROOF SKETCH
2
/
/
Z ”
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crDCs satisty a (universal!) Associativity Theorem — PROOF SKETCH

J r3 J 49) y It .
N N \\ // N
%) 03]
~- ~-
a,g/ Z l”'é Z I"i .
/ /
@, &
| / /
v 7/ // /7/ v
. L1y — < ) ® ¢ A
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crDCs satisty a (universal!) Associativity Theorem — PROOF SKETCH
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Cr

DCs satisty a (universal!) Associativity Theorem —

7 7
i A >\
\
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o

ROOF SKETCH
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N
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o o
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Stable system of monics

Definition 5 ([35], Sec. 3.1). For a category C, a stable system of monics M is a class of monomorphisms of C that
(1) includes all isomorphisms,
(11) 1s stable under composition, and
(ii1) is stable under pullback (i.e., if (f',m’) is a pullback of (m, f) with m € M, then m’ € M).

Throughout this paper, we will reserve the notation »— for monics in M, and < for generic monics.
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Some universal constructions
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A

d

hd hd

a

FPC

X

aox

a

b Y

/
x/
-
\Hlxﬂ

\

¢ — \Y

A\




Some universal constructions

A—Ff——8B

(simultaneously PBs, POs and FPCs)
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“Vertical” and “horizontal” categories of PBs, POs and FPCs

A f > B
m T n

h h
A/ f; > B/

Definition 7. Let C be a category with a stable system of monics M that has pullbacks along M-morphisms. Let
T be a type of commutative squares, for which we consider PB (pullbacks), PO (pushouts), or FPC (final pullback

complements). Then we define the following categories:

(1) T,(C, M) has as objects the morphisms of M, and as morphisms commutative squares of type T along arbitrary
morphisms of C, and a morphism composition induced by horizontal pasting of squares of type T.

(11) T,(C, M) has as objects the morphisms of C, and as morphisms commutative squares of type T along M-
morphisms, and a morphism composition induced by vertical pasting of squares of type T.
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Boundary functors

A f > B
Tdam
A f > B
A m T n H
h h
A/ f/ H Bl
\Lcodom
A’ i \ B’
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Boundary functors

A f > B
TdOm
A f > B
A m T n H
h h
A/ f/ H Bl
\Lcodom
A’ i \ B’
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Fibrational properties of the domain functors
(suggested by R. Garner)

Theorem 1. Let C be a category with a stable system of monics M, and with the following additional properties:

1. C has pullbacks.
2. C has pushouts and final pullback complements (FPCs) along M-morphisms.
3. Pushouts along M-morphisms are stable under pullbacks.

4. Pushouts along M-morphisms are pullbacks.

Then the domain functor dom : PB,(C, M) — C from the category of pullback squares along M-morphisms and
under horizontal composition to the underlying category C satisfies the following properties:

(i) dom : PB,(C, M) — C is a Grothendieck fibration, with the Cartesian liftings given by FPCs.

(ii) dom : PB,(C, M) — C is a Grothendieck opfibration, with the op-Cartesian liftings given by pushouts.

Nicolas Behr, Topos Institute Colloquium, June 9, 2022



Fibrational properties of the domain functors
(suggested by R. Garner)

(iii) dom : PB,(C, M) — C satisfies a Beck-Chevalley condition (BCC): adopting the notation m — (f, f') — n for
morphisms in PB(C, M) (cf. Figure 1), consider a commutative square in PB,(C, M) that is mapped by dom

into a pullback square in C:

(fif") y A / S B

(h.h') (8.8) — h PB 8 (20)
~ ~ v v
%, > P C l. > D

(i.d)
Then the following two equivalent conditions hold:

o (BCC-1): (f, 1) isop-Cartesian if (i,1") is op-Cartesian and (g, g") and (h, h") are Cartesian.
o (BCC-2): (g,g2")is Cartesian if (h,h’) is Cartesian and (f, ') and (i,i") are op-Cartesian.
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Fibrational properties of the domain functors
(suggested by R. Garner)

.
. . -
. ¢ .
.
. . g
. . .
.
. .
. .
. .
. .
. .
.
. .
.
.
.
.
.

N .
FPC
FPC | :
0 / PQ P /
R g
C’ i > D’
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Fibrational properties of the domain functors

(suggested by R. Garner)
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take PB
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D N
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.
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-
-
-
-
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]
.
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.
L]
.
.
.
-
- -
.
.
.
.
.
\ 3
. \
g
(0 .
]

N

N
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l‘/
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.
.
.
.
.
.
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Fibrational properties of the domain functors
(suggested by R. Garner)

Corollary 3. Let C be a category with a stable system of monics M.
(i) If C has pushouts along M-morphisms, the functor dom : PO, (C, M) — C is a Grothendieck opfibration.
(ii) If C has FPCs along M-morphisms, the functor dom : FPC,(C, M) — C is a Grothendieck fibration.
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Fiorational properties of the target functors

A A f > B B
S T

m — m T —

g g g v

A A f—> B B

o 7 :PB,(C, M) — C| carries no fibrational structures.
o T :FPC,(C, M) — CJ carries a Grothendieck opfibration structure.

o 7T :PO,(C, M) —» C|u carries a multi-opfibration structure.
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Multi-initial pushout complements

Definition 8. Let C be a category with a stable system of monics M. For all composable sequences of morphisms of
the form A — f - B—B — B’ (i.e., with 8 € M), we define the following class:

P(f.B) = {(A~a > A", A"~ f' - B) emor(C)* | @ € MA(f', ) = PO(a, )} (26)
More explicitly, the class P(f, 8) consists of all composable sequences of morphisms A—a — A’ — f* — B’ such that

there exists a pushout square in C whose boundary is given (a, f’) and (f,8). Then we refer to P(f,8) as the (M-)
multi-initial pushout complement (mIPC) of (f, ) if the class satisfies the following universal property:

A—7f—>B A f—> B
/ ;\ /Y Pb ﬁ\
YV e PO B g A, f)eP,B): o A POy B
Y Y Y
B’ H!Ia/’ Pb . B’
\/ A/ \& B / A f > B
A —— " —S B” A —f:" — S\ B I\
Y(v,g) e P(f,B): o "’O._. Bp :dA —p—>C'e€iso(C):y=poaAa =y oy
\/ 5. B’//

AII fn ; BII
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Multi-pushout complements

A——f—> B ——/— B
| B Po B
YV o PO B # A, f)e P(f,B): o A’ / —> B B :
V% 3:0 B
A —— — .Bn —f 4> B
A——7—>B
Y(y,g) e P(f,B): o bo._. Bp :dA —p—o>C' €iso(C):y=poaAa" =y ogp
\ B’

AII fn ; BII

Nicolas Behr, Topos Institute Colloquium, June 9, 2022



On the existence of multi-initial pushout complements

Proposition 1. Let C be a category with a stable system of monics M. Then if C
(i) has pullbacks along M-morphisms, and

(ii) pushouts along M-morphisms are stable under M-pullbacks.

Then C has multi-initial pushout complements (mIPCs) along M-morphisms.
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On the existence of multi-initial pushout complements

Proposition 1. Let C be a category with a stable system of monics M. Then if C
(i) has pullbacks along M-morphisms, and

(ii) pushouts along M-morphisms are stable under M-pullbacks.

Then C has multi-initial pushout complements (mIPCs) along M-morphisms.

Proor. Let us construct the diagrams below:

A f }B
/ﬁ
B/
N
A f > B
/ B B/
@ PO ’
\/ \/\/
A// f// >B//
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On the existence of multi-initial pushout complements

Proposition 1. Let C be a category with a stable system of monics M. Then if C
(i) has pullbacks along M-morphisms, and

(ii) pushouts along M-morphisms are stable under M-pullbacks.

Then C has multi-initial pushout complements (mIPCs) along M-morphisms.

Proor. Let us construct the diagrams below:

A f > B A f > B
/
/ ) /
/
Jé; ! « B
\/ /
/
v/ \/
take PB
B’ N A’ - £ X B’
V% Y . N
(23)
A f > B A = f > B
/" . b /" a / . PB B /"
“ PO P ¢ PO . p
\/ \/\/ \/\/ \/\/
A 7 > B A 7 > B
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Multi-pushout complements

A——f—> B ——/— B
| B Po B
YV o PO B # A, f)e P(f,B): o A’ / —> B B :
V% 3:0 B
A —— — .Bn —f 4> B
A——7—>B
Y(y,g) e P(f,B): o bo._. Bp :dA —p—o>C' €iso(C):y=poaAa" =y ogp
\ B’

AII fn ; BII
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Fibrational structures — “multi” variants a la Diers

Definition 3. A functor M : E — B 1s a multi-opfibration if the following property holds:

(e gi(f) —> e;. )

e
VT/ = R M
b ——f—3 I b ME S b
L — [=M(g;(f)) > }].EJf-e

a
— \eu —Hg(f)%em

e
T ‘ (5)
Y M . M M
\l/ \l/ ~
b—"— U ¢ — b b ——r— b —
\ M(@) \ M@ /

AVkeJre: (e, —Pr = e :a=PLroe(f) N M(PBr) = g)
= 3l ¢, — ¢ — ¢, € iso(E) : s1(f) = ¢ 0 £;(f) A M(¢) = idy

Nicolas Behr, Topos Institute Colloquium, June 9, 2022



T:PO,(C,M)— C|,, isamulti-opfibration

A A f > B B
S T

m % m PO n H n

2\ N N ~N

A A ff—— B B

Theorem 4. Let C be a category with a stable system of monics M. Suppose that
(i) C has has pullbacks along M-morphisms, and
(ii) pushouts along M-morphisms are stable under M-pullbacks in C.

Then the target functor T : PO,(C, M) — C| is a multi-opfibration.
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Fiorational properties of the source functors

A A f > B B
S T

m — m T n — n

g g g v

A A’ ff—— B B

o 5 :PB,(C, M) — C|j carries no fibrational structures.

e § :PO,(C, M) - CJ|p carries a Grothendieck opfibration structure.

o §:FPC,(C, M) —» C|p carries a residual multi-opfibration structure.
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§ : PO(C,M) — C},, is a Grothendieck opfibration

A A f > B B
S T

m % m PO n H n

2\ 2\ 2\ N

A/ A/ f/ H B/ B/

Theorem 5. Let C be a category with a stable system of monics M, that has pushouts along M-morphisms, and such
that M-morphisms are stable under pushout. Then the source functor S : PO,(C, M) — C|u is a Grothendieck
opfibration, with the op-Cartesian liftings provided by pushouts.

Proor. It suffices to instantiate the definition of Grothendieck opfibration to the case at hand:

A f—> B A f—> B
A—f—>B A—f—>B / @ \ / @ \
Y Y PO PO
V e :d e PC o Y oo A grt o A B (29)
Y Y Y
~ g J |
) MR
A/I f// ; BII Al/ f:” ; BII
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Factorization structures

Definition 9 ([34], Def. 14.1). For a category C, let E and M be classes of morphisms. By convention, in commuta-
tive diagrams, let morphisms in E be depicted as —, and morphisms in M by »—. Then (E, M) 1s called a factorization
structure for morphisms in C, and C 1s called (E, M)-structured it

(1) both E and M are closed under composition with isomorphisms,

(11) C has (E, M)-factorizations of morphisms (1.e., for every morphism f in C, there exist m € M and e € E such
that f = m o e),

(1) C has the unique (E, M)-diagonalization property:

A e » B A e » B

Y f g§ . f /H!d/ 8 (30)
~ ~ ~ )_<// ~
C > m > D C > m > D

In words: for all commutative squares as in (30) above, where e € E and m € M, there exists a unique morphism
d (referred to as the diagonal) such that f =doeand g =mod.
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Fibrational structures — “residual multi” variants

Definition 4. A functor R : E — B 1s a residual multi-opfibration 1t the following property holds:

( e p;(f) 5 e} )
. 4L R 3
g g
% b f > b’
! ’ \\%m'(f))—/ :
\ ! ) j€J fie
/ )
/“\ e pi(f) ye ——-p-—% "
e// ‘]
lR
Y R R

8

f—> b /; %
\R(a)

AN Ykedp,: (e, =P =€ :Bropi(f) =ang=RPB) o fk)

= Ale,—¢ — e, €iS0(E) : pr(f) = o pi(f/IAB; =Bk o d A fax = R(@) © fu;
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§ . FPC,(C,M) — C|, is a residual multi-opfibration

Theorem 7. Let C be a category with a stable system of monics M, that is (&, M)-structured, that has pullbacks,

pushouts and FPCs along M-morphisms, such that M-morphisms are stable under pushout, and such that pushouts
along M-morphisms are stable under M-pullbacks. Then S : FPC,(C, M) — C|s is a residual multi-opfibration.
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§ . FPC,(C,M) — C|, is a residual multi-opfibration

Theorem 7. Let C be a category with a stable system of monics M, that is (&, M)-structured, that has pullbacks,

pushouts and FPCs along M-morphisms, such that M-morphisms are stable under pushout, and such that pushouts
along M-morphisms are stable under M-pullbacks. Then S : FPC,(C, M) — C|s is a residual multi-opfibration.

A——Ff—— B

o A’ FPC B
Y
a,/’

4 v

A/I f// } B//
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§ . FPC,(C,M) — C|, is a residual multi-opfibration

Theorem 7. Let C be a category with a stable system of monics M, that is (&, M)-structured, that has pullbacks,

pushouts and FPCs along M-morphisms, such that M-morphisms are stable under pushout, and such that pushouts
along M-morphisms are stable under M-pullbacks. Then S : FPC,(C, M) — C|s is a residual multi-opfibration.

A—— f——B A f > B
~ Y -
@ @ PO B
b4 take PO N N
o A FPC B’ > o A P > Pop
Y Y |
I
I
y~ 2 y~
A/I f// ; B// A// f// } B//
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§ . FPC,(C,M) — C|, is a residual multi-opfibration

Theorem 7. Let C be a category with a stable system of monics M, that is (&, M)-structured, that has pullbacks,

pushouts and FPCs along M-morphisms, such that M-morphisms are stable under pushout, and such that pushouts
along M-morphisms are stable under M-pullbacks. Then S : FPC,(C, M) — C|s is a residual multi-opfibration.

A f > B
- N
A——f—— B A f > B o PO B
- Y -
- N
@ @ PO B A’ p \
v take PO v v E-M-fact. )
o A’ FPC B’ > o A’ P > P B > a’’ / i
|

A/I f// ; B// A// f// } B//

Z
\ R \
Z
\
Z
A\ = A\
=
/_—--Q
o)
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§ . FPC,(C,M) — C|, is a residual multi-opfibration

Theorem 7. Let C be a category with a stable system of monics M, that is (&, M)-structured, that has pullbacks,

pushouts and FPCs along M-morphisms, such that M-morphisms are stable under pushout, and such that pushouts
along M-morphisms are stable under M-pullbacks. Then S : FPC,(C, M) — C|s is a residual multi-opfibration.

A f > B
- N
A——f—— B A f > B @ PO B
- Y -
~ N
@ @ PO B A’ p \
v take PO v v E-M-fact. f
o A’ FPC B’ > o A’ P > P B > a’ i
Y Y l & take PB /
l
Cl” a,/ Hf/ CK’ IB/
l
- ~ -
A/I f// ; B// A// f// } B//

A// f// } B//
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KEY CONC

T

Examples of compositional categorical rewriting semantics
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Examples of categorical rewriting semantics

Definition 23. Let C be a category with a stable system of monics M.
(1) A rule,denoted O — r—1I,1saspanr = (0 < o, — K, — i, — I) in C. We refer to a rule as

e output-linear if o, is in M,
e input-linear if i, is in M, and

e [inear if both o, and i, are in M.

We will also refer to arbitrary spans as generic rules.
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Examples of categorical rewriting semantics

(11)

(iii)

In Double-Pushout (DPQO) semantics, a direct derivation 1s defined as a commutative diagram as in (75) below,
where the vertical morphisms are in M, and where the square marked (f,) 1s a pushout, while the square marked
(x,) 1s an element of an M-multi-IPC (and thus in particular also a pushout). A category C is thus suitable for
DPO-semantics if it has multi-initial pushout complements (mIPCs) along M-morphisms, if it has pushouts
along M-morphisms, and if M-morphisms are stable under pushout.

In Sesqui-Pushout (SqPO) semantics, a direct derivation 1s defined as a commutative diagram as 1n (75) below,
where the vertical morphisms are in M, and where the square marked (f,) 1s a pushout, while the square marked
(x4 ) 1s a final pullback complement (FPC). A category C is thus suitable for SQPO-semantics if it has FPCs along
M-morphisms, if 1t has pushouts along M-morphisms, and if M-morphisms are stable under pushout.

O, [

O +—— I O < K, e
Y Y Y Y
0 - I 0’ < K, > I




Compositional rewriting double categories (crDCs)

Definition 13. A double category (DC) D 1s a compositional rewriting DC (crDC) 1if 1t has the following properties:

(1) Dy has multi-sums.

(11) Dy and 1Dy have pullbacks. (This entails in particular that for i € {1, 2}, ID; morphisms are stable under pullback,

and pullbacks in 1D; are effective, 1.e., for any span of [D; morphisms extending a pullback diagram in [;, the
unique mediating morphism 1s in D;.)

(111) Squares 1n D have the following horizontal decomposition property:

A 4 ) — 0 <4 r |:| A <2 ry o Z i |:|
Y @21 Y Y @21 '
v =
n Y m n m
rél /rél T T
$ / ‘\ 4 p \ 4
A | A |
(43)
/ i —\
A < ) — o < r L]
Y @21 Y ) . .y ,
v . dle > @ €iso(Dy) : m" =pom
n ' m
_— T T
~ / \ ~
A H

(1v) The source functor S : D1 — Dy 1s a multi-opfibration.

(v) The target functor 7 : D; — Dy 1s a residual multi-opfibration.
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Existence of horizontal and vertical units

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of Dy and 1D, have horizontal and
vertical units in the following form.:

[ I I I 0+t 0+—"— K ——— I

Y Y N Y

m m = m m-, 1H0 1HI .= (77)
A g g A H H

I/ Y " I/ I/ I/ I/ 0 Z . I 0/ < o Kr’ l > Il
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Horizontal composition

)

N~

. a
Y Y Y
n m — O
~ ~ ~
"
V4
"
i)
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Horizontal composition

)

. &
N N N
n m = 0,
~N~ ~N~ ~N~
.7

V4

"

n iy — -
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Horizontal decomposition

*
*
.
.
*

° “‘ ir
T PB
o0

Ly
Or21 \ )
v /

(Tay ) g
\ T @21/

P

]

- ¢

\
7

/
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Horizontal decomposition — double-pushout semantics
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Horizontal decomposition — double-pushout semantics
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Horizontal decomposition — sesqui-pushout semantics

Nicolas Behr, Topos Institute Colloquium, June 9, 2022



Horizontal decomposition — sesqui-pushout semantics
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D, has pullbacks

(85)
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Final result: table of sufficient conditions for crDCs!

Double-Pushout semantics Sesqui-Pushout semantics
: semi- : : output- input- :
Property linear linear generic linear linear linear generic
Do has v (Lemma 8)
multi-sums
1 horizon-
tal/vertical v’ (Corollary 7)
units
vertical . : .
composition v" (by pushout-pushout composition) v (by PO-PO- and vertical FPC composition)
horizontal C has pullbacks C has C has pullbacks
composition along M-morphisms | pullbacks
(Proposition 8) | A (y._jij-a) N A (L-iii-a) | A (V-idi-a) | A (H-iii-a) | A (V-iii-a) | A (L-iii-a)
(W-111-a)
horizontal C has pushouts along M-morphisms C has pullbitcks //\\/( has puilhouts and FPCs
decomposition alohg /¥i-MOTphisSms
(Proposition 9) A has pullbacks A has A (Viiii-a)
along M-morphisms | pullbacks v (H-iii-a) A (H-m1-a) | A (V-11-a) | A (L-111-a)
A (V-iii-b) A (L-1ii-b)
D, has pullbacks
(Proposition 10) (V-i-a)
multi-igisil?ration C is a vertical weak adhesive C is vertical weak adhesive HLR and has
(Theorem 15) HLR category FPCs along M-morphisms
mi;g_i rgsgf;il)n C is a vertical weak adhesive C is vertical weak adhesive HLR and has
P HLR category FPCs along M-morphisms
(Theorem 15)

Table 3: Requirements on the underlying category for giving rise to compositional rewriting semantics of the various kinds. For all cases, we
minimally assume that C has a stable system of monics, with respect to which C is finitary, with respect to which the variants of adhesivity
properties are required to hold, and such that Dy := C]|sq has pullbacks. The latter is equivalent to requiring that C has pullbacks of spans of
M-morphisms, which is true for all of the listed adhesivity properties. We moreover use the abbreviation (W-iii) to denote (V-iii) A (H-iii).
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Final result: table of sufficient conditions for crDCs!

Double-Pushout semantics

Sesqui-Pushout semantics

Propert linear semi- eneric linear output- input- eneric
eIty linear S linear linear S

ID)O. has v (Lemma 8)
multi-sums
1 horizon-
tal/vertical v’ (Corollary 7)

units

vertical v (by pushout-pushout composition) v' (by PO-PO- and vertical FPC composition)

composition y b P P Y P
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Final result: table of sufficient conditions for crDCs!

Double-Pushout semantics

Sesqui-Pushout semantics

. semi- . . output- input- .
Property linear linear generic linear linear linear generic
horizontal | ¢ he/l\s/(p ullbaﬁks ?llil ask C has pullbacks
composition along M-morphisms | pullbacks
(Proposition 8) |\ (jjj-a) (W_iAﬁ_a) A (L-iii-a) | A (V-iii-a) | A (H-iii-a) | A (V-iiica) | A (L-iii-a)
horizontal C has pushouts along M-morphisms C has pullballcks //\\/( has puilhouts and FPCs
decomposition along /Vi-IMOTPHISIS
(Proposition 9) A has pullbacks A has A (Viiii-a)
along M-morphisms | pullbacks v (Heiii-a) A (H-111-a) | A (V-11-a) | A (L-i11-a)
A (V-1ii-b) A (L-11i-b)




Final result: table of sufficient conditions for crDCs!

Property

Double-Pushout semantics

. semi- .
linear . generic
linear

linear

Sesqui-Pushout semantics

output- input-

. . eneric
linear linear S

ID; has pullbacks
(Proposition 10)

(V-iii-a)

Sisa
multi-opfibration
(Theorem 15)

C 1s a vertical weak adhesive
HLR category

C 1s vertical weak adhesive HLLR and has
FPCs along M-morphisms

T 1s a residual

multi-opfibration
(Theorem 15)

C 1s a vertical weak adhesive
HLR category

C 1s vertical weak adhesive HLLR and has
FPCs along M-morphisms

Table 3: Requirements on the underlying category for giving rise to compositional rewriting semantics of the various kinds. For all cases, we
minimally assume that C has a stable system of monics, with respect to which C is finitary, with respect to which the variants of adhesivity
properties are required to hold, and such that Dy := C| has pullbacks. The latter is equivalent to requiring that C has pullbacks of spans of
M-morphisms, which is true for all of the listed adhesivity properties. We moreover use the abbreviation (W-iii) to denote (V-ii1) A (H-ii1).
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Category
(underlying data type)

~ “DPO — adhesivity properties”, “SqPO — quasi-topoi’

references

Set
(sets)

Graph
(directed multigraphs)

HyperGraph
(directed ordered hypergraphs)
Sig
(algebraic signatures)

A

S

(presheaves on category S)

Ts
(term graphs over a signature X)

TripleGraph
(functor category [S3, Graph])

AGraphy
(attributed graphs over signature X)

SymbGraph,,
(symbolic graphs over X-algebra D)

uGraph
(undirected multigraphs)

ElemNets
(elementary Petri nets)

PTnets
(place/transition nets)

Spec
(algebraic specifications)

SGraph
(directed simple graphs)

SetF
(coalgebras for F' : Set — Set)

ISets
(list sets)

[5]

[5]

[7, Ex. 7]

[7, Ex. 6]

[58, 54]

[41]

[3, Fact 4.18]

[3, Thm. 11.11], [8, 54]

[59, Thm. 2], [54]

[29]

[8]

[3, Fact 4.21], [8]

[7, Ex. 6], [3, Fact 4.24]

v |7, Prop. 17],

() [7], [57, Thm. 1]

v [39]

«—— cf. p. 45

Table 2: Examples of categories exhibiting various forms of adhesivity properties. The symbol ? indicates when a certain property is (to the best [©f
our knowledge) not known to hold. Note that for the HLR variants of adhesivity properties, the information not contained in the table is the preci§e
nature (cf. references provided) of the stable system of monics M for which the adhesivity properties hold. Moreover, the precise conditions ()
and (1) under which the category Setr of F-coalgebras has quasi-topos or adhesivity properties are provided in [7] and [57, Thm. 1], respectively.
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Some constructions for categories with adhesivity properties

F Description
ldset  directed multigraphs
p POV F OV i . directed “ordered” hypergraphs with multiple
— i FNXEWY) o= V) <1 — *  incidences (HyperGraph [3, Fact 4.17] aka PNet [7,
o AoF(pv) Flgy) ov Ex. 7])
v R v \ directed “unordered” hypergraphs with multiple
Er=ea FVOXEWV) o= FV) < r =V M incidences (= PTNets of [3, Fact 4.21])
directed “unordered” hypergraphs with simple
P incidences (= ElemNets of [3, Fact 4.20])
F Description
p(1.2)  undirected multigraphs [29]
E t——> F(V) <—F 4 . undirected “ordered” hypergraphs with multiple
incidences (1.e. lists)
or F(ev) ey
< 1 1 M undirected “unordered” hypergraphs with multiple
E’ v —> F(V') &—F 1% incidences
P undirected “unordered” hypergraphs with simple

incidences

Table 1: Collection of examples for categories with adhesivity properties based upon two “schemas” of comma category constructions. Here, we
employ the notations [1* for the free monoid functor, M (also denoted @* in [3]) for the free commutative monoid functor, # for the covariant
powerset functor, and P2 for the restricted version thereof (cf. e.g. [57]).
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Category theory Foundations of compositional rewriting theory

-Special types of categories: - Compositional rewriting double categories (crDCs)
- adhesive/quasi-adhesive/adhesive HLR/weak adhesive HLR/... -Concurrency Theorems
* quasi-topoi - Associativity Theorems

-Double categories -Rule Algebra and Stochastic Mechanics

- Universal constructions: - Tracelet Hopf Algebras and Decomposition Spaces

- stable systems of monics, factorisation systems, multi-sums, ...

* pushouts, pullbgcks, final pullback complements, mgln—mmal pushout Collection of rewriting semantics
complements, final pulloack complement augmentations, ...

- Grothendieck fibrations/multi-opfibrations/residual multi-opfibrations ... . Double Pushout/Sesqui-Pushout/Single-Pushout/AGREE/PBPO+/...
-Lemmata on special properties of universal constructions: - linear/input-linear/output-linear/non-linear;. ..

'(Pe-)QOmDOSiTiOﬂ lproperties -Theory of constraints and application conditions:
fibrational properties ) -nested application conditions
* Beck-Chevalley conditions - constraint-guaranteeing/-preserving semantics

- Compositional rewriting for rules with conditions
Diagrammatic reasoning - shift and transport constructions
- Commutative diagrams - Concurrency and associativity theorems
- Reasoning moves - Rule algebras/stochastic mechanics/tracelets/...

- from universal properties
- from diagrammatic lemmata
- Compositionality of reasoning moves

Formalisations for coreact.workbench

- Auxiliary tactics to convert between drawings and Coq expressions
- From drawing transformations to reasoning moves
- From drawing transformations to Cypher queries
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Category theory

- Special types of categories:
- adhesive/quasi-adhesive/adhesive HLR/weak adhesive HL
* guasi-topoil

- Double categories

- Universal constructions:
- stable systems of monics, factorisation systems, multi-sums, ...

* pushouts, pullbacks, final pullback complements, multi-initial pushout
complements, final pulloack complement augmentations, ...

- Grothendieck fibrations/multi-opfibrations/residual multi-opfibrations ...
- Lemmata on special properties of universal constructions:
- (De-)composition properties
- filorational properties
- Beck-Chevalley conditions
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Executable Applied Category theory (EXACT)

- Constructive characterization of categories with adhesivity/quasi-topoi:
- Artin gluing/slice/coslice/product/sum/functor and comma categories/ ...

- collection of practically relevant examples (Graph as presheaf topos,
SimpleGraph via Artin gluing, HyperGraph as comma category, ...)
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double categories (crDCs) «— R. Garner: residual multi-opfibrations

= semi-final liftings (Tholen, 1950s)
= link to algebraic topology?

«—— other semantics (PBPO+, AGREE, ...),
extension to rewriting with
constraints & conditions, ...

Explicit rewriting semantics (DPO, SgPoO, ...)

organic chemistry «— search for a better classificaiton

of suitable categories (especially

N terms of existence guarantees

for factorization systems, FPCs, ...),
constructions for suitable categories
biochemistry (comma categories, Artin gluing, ...)
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