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Remark 9. The proof of the associativity theorem in our novel fibrational formulation of compositional rewriting

double categories is a strong indication that modularizing the categorical structures in this form enables vastly com-

plex mathematical developments feasible, and at the same time provides some deep structural insights. Most im-

portantly, our characterization of a given categorical rewriting semantics to qualify as being compositional is based

exclusively on verifying properties of just the direct derivations (and on the existence of multi-sums), i.e., only on the

very definition of the rewriting semantics itself. The above derivation demonstrates that our notion of compositional

rewriting double categories (crDCs) guarantees the existence of both a concurrency theorem and an associativity the-

orem, which is why we are led to conjecture that indeed crDCs might provide an e�cient approach also for verifying

compositionality of rewriting semantics beyond the eight di↵erent semantics for which we instantiate crDCs in the

present paper (cf. Section 4.4).
4. Examples of classes of compositional rewriting theories

This section is structured into three main parts: in Sections 4.1 and 4.2, we will present classes of categories

that admit compositional rewriting theories (i.e., various notions of categories with adhesivity properties, and quasi-

topoi, respectively); in Section 4.3, we will demonstrate that these categories admit the requisite constructions of

compositional rewriting double categories; we will then demonstrate in Section 4.4 a variety of rewriting semantics

and illustrations thereof based upon our general framework of compositional rewriting theories.

4.1. Categories with adhesivity properties

Starting in the early 2000s, the seminal work of Lack and Sobocinski [4, 5, 7] introducing adhesive and quasi-

adhesive categories, which was later generalized by Ehrig et al.[40, 3, 38] to adhesive HLR and weak adhesive HLR

categories and their variants, constituted a significant breakthrough in formalizing and standardizing the theory of

Double-Pushout (DPO) rewriting. In this section, we will quote the salient definitions as well as key results from this

research, with the purpose of providing a curated list of categories of practical interest that carry one of the variants of

adhesivity properties mentioned above. We refer the interested readers to [3, 38] (cf. also [29]) for further background

39

O

O

I

I

O 0

O 0

I 0

I 0

r

m

r 0

m 0

S

m

T

m 0

↵

Figure 2: Convention for source and target functors for double categories.
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Figure 3: On the definition of double categories.31

3.3. Compositional rewriting double categories

Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}
, Di morphisms are stable under pullback,

and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the

unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to

the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-

opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-

rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem

The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for

compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the

morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):
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• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),

there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the

direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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• Finally, since " j( f ) =  � ��1
` , " j( f ) is an isomorphism, which concludes the proof.

⇤

We conclude the general discussion of multi-opfibrations with the following technical results, which will be used
in the proof of the associativity theorem for compositional rewriting theories in Section 3.5:

Lemma 2 (Pullback-splitting lemma for multi-opfibrations). Let E be a category that has pullbacks, and let M :
E! B be a multi-opfibration. Then the following property holds:
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More explicitly, for every diagram such as on the left of (9), whose bottom part contains a pullback square in B, the
following properties hold true:

(i) There exists an E-morphism e � " j( f ) ! e0j such that there exists a unique E-morphism e0j � � j ! e000 with
M(" j( f )) = f and M(� j) = h1 � g1 = h2 � g2, and such that the diagram commutes.

(ii) There then exist E-morphisms e0j � " j,k(g1) ! e00j,k and e0j � " j,`(g2) ! e00j,` such that there exist unique E-
morphisms e00j,k � � j,k ! e000 and e00j,` � � j,` ! e000 such that M(" j,k(g1)) = g1, " j,`(g2)) = g2, M(� j,k) = h1 and
M(� j,`) = h2, and such that the diagram commutes.

(iii) Moreover, the square in E into e000 is a pullback.

Proof. Claims (i) and (ii) follow directly from repeated applications of the universal property of multi-opfibrations.
It thus remains to prove claim (iii), i.e., that the square in E on the top right of the diagram in (9) is indeed a pullback.
To this end, we construct the auxiliary diagram below by taking a pullback:
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• By the universal property of pullbacks, there exists an E-morphism e0j � ⇡! ep (where ep denotes the pullback
object) that makes the diagram commute.

• Since M is a functor, we also obtain B-morphisms b0�p! bp (where bp = M(ep)), p01 = M(⇡01) and p02 = M(⇡02)
that make the diagram commute.
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berg, G., Schürr, A. (eds.) Graph Transformations (ICGT 2010). LNCS, vol. 6372,
pp. 250–265. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

32. Johnstone, P.T.: Sketches of an Elephant – A Topos Theory Compendium, vol. 1.
Oxford University Press (2002)
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15 - 21/07/2018 18th Workshop: Noncommutative Probability, Operators Algebras, Random Matrices and Related Topics, with
Applications (talk), Stefan Banach Conference Center of the Polish Academy of Sciences, Będlewo, Poland

29/05/2018 Journée-séminaire de combinatoire, Université Paris 13 (talk), France

13/02/2018 Séminaire Systèmes complexes, IRIF, Université Paris Diderot (talk), France

05/02/2018 Seminario di ENEA, Centro Ricerche Frascati, Rome (talk), Italy

11 - 12/01/2018 International Conference on Combinatorics and Physics (Penson71Fest) (invited talk), Polish Academy of Sciences
Paris, France

09 - 10/11/2017 Combinatorics and Arithmetic for Physics: special days workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

06/11/2017 IRIF Newcomers Day (talk), IRIF, Université Paris Diderot, France

18/10/2018 Équipe de travail “Analyse et conception de systèmes” (talk), IRIF, Université Paris Diderot, France

25/04/2017 Journée-séminaire de combinatoire (talk), Université Paris 13, France

09/02/2017 Séminaires d’Informatique Théorique (talk), DI Université de Rouen, France

Home Publications TalksNicolas Behr

© 2018-2021 Nicolas Behr

Published with Wowchemy — the free, open source website builder that empowers creators.

Nicolas Behr
CNRS Researcher in Computer Science

Université de Paris, CNRS, IRIF, France

! " # !

Biography
I am a CNRS researcher in theoretical computer science at IRIF, Université de Paris. Previously, I have been a Short-Term

Fellow at CRI Paris in spring and summer of 2020, working on the development of tracelet-analysis algorithms for the

biochemistry platform Kappa and for the organo-chemistry platform MØD. I previously held a Marie Skłodowska-Curie

Individual Fellowship (2017-2019), working in the Ueld of theoretical computer science at IRIF, Université Paris Diderot.

The aim of my project with Jean Krivine (IRIF) consisted in developing extensions of my rule-algebraic framework to

restricted variants of rewriting and to the biochemical reaction language Kappa. I am also frequently to be found at the

LPTMC of the UPMC/Sorbonne/Paris 06, working with Gérard H.E. Duchamp (Paris 13) and Karol A. Penson (Paris 6) on

topics in combinatorics. My previous positions include a Postdoc position with Vincent Danos at ENS Paris and at

University of Edinburgh (2014-2017) and a Postdoc position in mathematical physics with Anatoly Konechny at Heriot-

Watt University in Edinburgh (2011-2014).

Together with Reiko Heckel and Jean Krivine, I am organizing the GReTA - Graph Transformation Theory and
Applications online seminar series - see www.irif.fr/~greta for more information and seminar announcements.

Software

Based upon joint work with Reiko Heckel and Maryam Ghaffari Saadat (University of Leicester), I am developing the

ReSMT Python package, which aims to implement rewriting-theoretic concepts via utilizing the Microsoft Z3 theorem

prover as the computational core. At present (v. 0.0.3), the package covers typed directed multigraphs (TDGs) with

structural constraints as its base datatype, with some of the key operations implemented including the search for

partial overlaps of TDGs modulo structural constraints formulated via forbidden pattern non-embedding assertions.

Project repository: https://gitlab.com/nicolasbehr/ReSMT

Documentation: online | PDF | installation instructions | gallery of examples

Selected Talks & Activities

30/11 - 02/12/2021 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

05/11/2021 “GReTA international online seminar series” (talk; Zoom registration, YouTube livestream), online

12 - 16/07/2021 4th International Conference on Applied Category Theory (ACT 2021) (distinguished talk; video, slides, paper), online

24 - 25/06/2021 14th International Conference on Graph Transformation (ICGT 2021) (talk; paper, slides), online

22/06/2021 Twelfth International Workshop on Graph Computation Models (GCM 2021) (paper), online

11/06/2021 Algebraic and Combinatorial Perspectives in the Mathematical Sciences (ACPMS) seminar (talk), online

29/03/2021 LACL seminar (talk), Laboratoire d’Algorithmique, Complexité et Logique, Creteil, France

09/03/2021 Journée-séminaire de combinatoire, CALIN, Université Paris 13 (talk), online

10 - 11/12/2020 “Species and operads in combinatorics and semantics” workshop (talk; slides), IRIF, Université de Paris, France

02 - 03/12/2020 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk; video), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

15/10/2020 Journées de rentrée PPS (talk), IRIF, Université de Paris, France

20/07/2020 CRI Research Collaboratory seminar (talk), Centre de Recherches Interdisciplinaires (CRI), Paris, France

5/07/2020 TERMGRAPH 2020: 11th International Workshop on Computing with Terms and Graphs (invited talk), online event

25 - 26/06/2020 ICGT 2020: 13th International Conference on Graph Transformation (talk), online event

24/06/2020 GCM 2020: Eleventh International Workshop on Graph Computation Models (talk), online event

Interests

Stochastic rewriting systems

Combinatorics of dynamical systems

Moment bisimulations

Tracelets

Education

PhD in Mathematical Physics, 2012
Max Planck Institute for Gravitational Physics Golm and Humboldt University

Berlin

!

Diploma in Mathematical Physics, 2008
Max Planck Institute for Gravitational Physics Golm and Humboldt University

Berlin

!

Preprints and
Publications

!  Nicolas Behr, Jean Krivine, Jakob L. Andersen, Daniel Merkle (2021). Rewriting theory for the life sciences: A

unifying theory of CTMC semantics. In: Theoretical Computer Science.

PDF  Cite  Video

!  Nicolas Behr, Joachim Kock (2021). Tracelet Hopf algebras and decomposition spaces. In: arXiv preprint.

Preprint  Cite  Slides  Video

!  Nicolas Behr, Russ Harmer, Jean Krivine (2021). Concurrency Theorems for Non-linear Rewriting Theories. In:

arXiv preprint (long version including additional technical appendices of a paper with the same title accepted for ICGT

2021).

Preprint  Cite  Slides

!  Nicolas Behr, Stefan Fredenhagen (2021). Fusion of interfaces in Landau-Ginzburg models: a functorial approach.

In: J. High Energ. Phys. 2021, 235 (2021)..

PDF  Cite

!  Nicolas Behr, Jean Krivine (2021). Compositionality of Rewriting Rules with Conditions. Compositionality 3, 2

(2021)..

PDF  Cite

!  Nicolas Behr (2021). On Stochastic Rewriting and Combinatorics via Rule-Algebraic Methods. Invited Paper in

Patrick Bahr (ed.): Proceedings 11th International Workshop on Computing with Terms and Graphs (TERMGRAPH

2020), Online, 5th July 2020, Electronic Proceedings in Theoretical Computer Science 334, pp. 11–28..

PDF  Cite

!  Nicolas Behr, Maryam Ghaffari Saadat, Reiko Heckel (2020). Escient Computation of Graph Overlaps for Rule

Composition: Theory and Z3 Prototyping. In: B. Hoffmann and M. Minas: Proceedings of the Eleventh International

Workshop on Graph Computation Models (GCM 2020), Online-Workshop, 24th June 2020, Electronic Proceedings in

Theoretical Computer Science 330, pp. 126–144..

PDF  Cite

!  Nicolas Behr (2020). Tracelets and Tracelet Analysis Of Compositional Rewriting Systems. In: John Baez and Bob

Coecke: Proceedings Applied Category Theory 2019 (ACT 2019), University of Oxford, UK, 15-19 July 2019, Electronic

Proceedings in Theoretical Computer Science 323, pp. 44-71..

PDF  Cite  Slides  Video

!  Nicolas Behr, Vincent Danos, Ilias Garnier (2020). Combinatorial Conversion and Moment Bisimulation for

Stochastic Rewriting Systems. In: Logical Methods in Computer Science, Volume 16, Issue 3.

PDF  Cite  Slides

!  Nicolas Behr, Pawel Sobocinski (2020). Rule Algebras for Adhesive Categories (invited extended jounral version).

In: Logical Methods in Computer Science, Volume 16, Issue 3.

PDF  Cite

!  Nicolas Behr, Jean Krivine (2020). Rewriting Theory for the Life Sciences: A Unifying Theory of CTMC Semantics.

Graph Transformation, 13th International Conference, ICGT 2020, Proceedings, volume 12150 of Theoretical Computer

Science and General Issues, Springer International Publishing.

Preprint  PDF  Cite

!  Nicolas Behr (2019). Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework. Electronic

Proceedings in Theoretical Computer Science, 309:23–52.

PDF  Cite  Slides

!  Nicolas Behr, Giuseppe Dattoli, Ambra Lattanzi, Silvia Licciardi (2019). Dual Numbers and Operational Umbral

Methods. In: Axioms, 8(3):77.

PDF  Cite

!  Nicolas Behr, Giuseppe Dattoli, Ambra Lattanzi (2019). Operator Ordering and Solution of Pseudo-Evolutionary

Equations. In: Axioms, 8(1), p.35.

PDF  Cite

!  Nicolas Behr, Giuseppe Dattoli, Gérard H.E. Duchamp, Silvia Licciardi, Karol A. Penson (2019). Operational

Methods in the Study of Sobolev-Jacobi Polynomials. In: Mathematics, (7), 2, pp. 124.

PDF  Cite  Slides  Video

!  Nicolas Behr, Pawel Sobocinski (2018). Rule Algebras for Adhesive Categories. In: 27th EACSL Annual Conference

on Computer Science Logic (CSL 2018), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp.
11:1–11:21.

PDF  Cite  Slides

!  Nicolas Behr, Gérard H.E. Duchamp, Karol A. Penson (2018). Explicit formulae for all higher order exponential

lacunary generating functions of Hermite polynomials. In: arXiv preprint.

Preprint  PDF  Cite  Slides

!  Nicolas Behr, Gérard H.E. Duchamp, Karol A. Penson (2017). Combinatorics of chemical reaction systems. In:

arXiv preprint.

Preprint  PDF  Cite  Slides

!  Nicolas Behr, Vincent Danos, Ilias Garnier, Tobias Heindel (2016). The algebras of graph rewriting. In: arXiv

preprint.

Preprint  PDF  Cite  Slides  Video

!  Nicolas Behr, Vincent Danos, Ilias Garnier (2016). Stochastic mechanics of graph rewriting. In: Proceedings of the

31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ‘16, ACM Press.

Preprint  PDF  Cite  Slides

!  Nicolas Behr, Ayan Mukhopadhyay (2016). Holography as a highly escient renormalization group uow. II. An

explicit construction. In: Physical Review D, (94), 2.

Preprint  PDF  Cite

!  Nicolas Behr, Stanislav Kuperstein, Ayan Mukhopadhyay (2016). Holography as a highly escient renormalization

group uow. I. Rephrasing gravity. In: Physical Review D, (94), 2.

Preprint  PDF  Cite

!  Nicolas Behr, Stefan Fredenhagen (2015). Matrix factorisations for rational boundary conditions by defect fusion.

In: Journal of High Energy Physics, (2015), 5.

Preprint  PDF  Cite

!  Nicolas Behr, Anatoly Konechny (2014). Renormalization and redundancy in 2d quantum Ueld theories. In: Journal

of High Energy Physics, (2014), 2.

Preprint  PDF  Cite  Slides

!  Nicolas Behr, Stefan Fredenhagen (2012). Variable transformation defects. Proceedings of Symposia in Pure

Mathematics, Volume 85.

Preprint  PDF  Cite

!  Roland Bartmann, Nicolas Behr, Andre Hilger, Thomas Krist (2011). New solid state lens for reuective neutron

focusing. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment, (634), 1, pp. S104–S107.

PDF  Cite

!  Nicolas Behr, Stefan Fredenhagen (2010). D-branes and matrix factorisations in supersymmetric coset models. In:

Journal of High Energy Physics, 11, (2010)136.

Preprint  PDF  Cite

!  Nicolas Behr, Markus B. Raschke (2008). Optical Antenna Properties of Scanning Probe Tips: Plasmonic Light

Scattering, Tip-Sample Coupling, and Near-Field Enhancement. In: The Journal of Physical Chemistry C, (112), 10, pp.

3766–3773.

PDF  Cite

!  Catalin C. Neacsu, Jens Dreyer, Nicolas Behr, Markus B. Raschke (2007). Reply to ``Comment on `Scanning-

probe Raman spectroscopy with single-molecule sensitivity' ''. In: Phys. Rev. B, (75), pp. 236402.

PDF  Cite

!  Catalin C. Neacsu, Jens Dreyer, Nicolas Behr, Markus B. Raschke (2006). Scanning-probe Raman spectroscopy

with single-molecule sensitivity. In: Physical Review B, (73), 19.

PDF  Cite

!  Catalin C. Neacsu, Jens Dreyer, Nicolas Behr, Markus B. Raschke (2006). Ultrahigh resolution scattering near-

Ueld vibrational microscopy with single molecule sensitivity. In: 2006 Conference on Lasers and Electro-Optics and 2006

Quantum Electronics and Laser Science Conference, IEEE.

PDF  Cite

Talks & Activities
30/11 - 02/12/2021 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études

ScientiUques (IHÉS), Bures sur Yvette, France

05/11/2021 “GReTA international online seminar series” (talk; Zoom registration, YouTube livestream), online

12 - 16/07/2021 4th International Conference on Applied Category Theory (ACT 2021) (distinguished talk; video, slides, paper), online

24 - 25/06/2021 14th International Conference on Graph Transformation (ICGT 2021) (talk; paper, slides), online

22/06/2021 Twelfth International Workshop on Graph Computation Models (GCM 2021) (paper), online

11/06/2021 Algebraic and Combinatorial Perspectives in the Mathematical Sciences (ACPMS) seminar (talk), online

29/03/2021 LACL seminar (talk), Laboratoire d’Algorithmique, Complexité et Logique, Creteil, France

09/03/2021 Journée-séminaire de combinatoire, CALIN, Université Paris 13 (talk), online

10 - 11/12/2020 “Species and operads in combinatorics and semantics” workshop (talk; slides), IRIF, Université de Paris, France

02 – 03/12/2020 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk; video), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

15/10/2020 Journées de rentrée PPS (talk), IRIF, Université de Paris, France

20/07/2020 CRI Research Collaboratory seminar (talk), Centre de Recherches Interdisciplinaires (CRI), Paris, France

5/07/2020 TERMGRAPH 2020: 11th International Workshop on Computing with Terms and Graphs (invited talk), online event

25 - 26/06/2020 ICGT 2020: 13th International Conference on Graph Transformation (talk), online event

24/06/2020 GCM 2020: Eleventh International Workshop on Graph Computation Models (talk), online event

14 - 15/05/2020 POSTPONED to spring 2021 due to COVID-19 pandemic Colloquium “La biologie et la chimie de l’information”
(invited talk), Collège de France, Paris, France

05/03/2020 Computer Science Colloquium (talk), University of Southern Denmark, Odense, Denmark

21/02/2020 Informatics Seminar (talk), University of Leicester, UK

26/11/2019 LSV Seminar, Laboratoire SpéciUcation et VériUcation, ENS Paris-Saclay, Cachan, France

21/11/2019 Software Science Departmental seminar (talk), School of Information Technologies, TalTech, Tallinn, Estonia

06 - 08/11/2019 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

25/10/2019 FIAS CEF Symposium (talk), Frankfurt Institute for Advanced Studies, Germany

14/10/2019 seminar of the Research Group Theoretical Computer Science (talk), Universität Bremen, Germany

3/10/2019 PPS seminar (talk), IRIF, Université Paris Diderot, France

22 - 26/07/2019 15th International Symposium on Orthogonal Polynomials, Special Functions and Applications (OPSFA'15) (invited
talk; slides, video), Research Institute for Symbolic Computation (RISC), Hagenberg, Austria

17/07/2019 Tenth International Workshop on Graph Computation Models (GCM 2019) (talk; slides), Eindhoven University of
Technology, Eindhoven, The Netherlands

15 - 19/07/2019 Applied Category Theory Conference (ACT 2019), University of Oxford (talk; slides, video), Oxford, United Kingdom

28/05 - 02/ 06/2019 27th Foundational Methods in Computer Science Workshop (FMCS 2019; talk), University of Calgary, Alberta,
Canada

06 - 07/ 05/2019 Tokenomics, International Conference on Blockchain Economics, Security and Protocols, ENS Paris, France

18 - 22/03/2019 Journées Aléa 2019, Centre International de Rencontres Mathématiques (CIRM), Marseille, France

19/02/2019 Calcul Natural (CANA) seminar (talk), Laboratoire d’Informatique Fondamentale de Marseille (LIF), Marseille, France

12 - 16/11/2018 Rencontres du GDR Renormalisation, Laboratoire de Mathématiques Blaise Pascal, Clermont-Ferrand, France

8 - 9/11/2018 Journées PPS (talk), IRIF, Université Paris Diderot, France

31/10/2018 Seminar of the Équipe Antique (talk), DI-ENS, Paris, France

24 - 25/10/2018 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

10 - 11/10/2018 Emergent Algorithms and Network Dynamics workshop (invited talk; slides), Institut Henri-Poincaré, Paris, France

01/10/2018 Séminaires du LPTMC, Sorbonne Université (Paris 6) (talk), France

09 - 12/09/2018 81st Séminaire Lotharingien de combinatoire (KrattenthalerFest), Strobl, Austria

04 - 07/09/2018 Computer Science Logic 2018 conference (talk), School of Computer Science of the University of Birmingham, UK

15 - 21/07/2018 18th Workshop: Noncommutative Probability, Operators Algebras, Random Matrices and Related Topics, with
Applications (talk), Stefan Banach Conference Center of the Polish Academy of Sciences, Będlewo, Poland

29/05/2018 Journée-séminaire de combinatoire, Université Paris 13 (talk), France

13/02/2018 Séminaire Systèmes complexes, IRIF, Université Paris Diderot (talk), France

05/02/2018 Seminario di ENEA, Centro Ricerche Frascati, Rome (talk), Italy

11 - 12/01/2018 International Conference on Combinatorics and Physics (Penson71Fest) (invited talk), Polish Academy of Sciences
Paris, France

09 - 10/11/2017 Combinatorics and Arithmetic for Physics: special days workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

06/11/2017 IRIF Newcomers Day (talk), IRIF, Université Paris Diderot, France

18/10/2018 Équipe de travail “Analyse et conception de systèmes” (talk), IRIF, Université Paris Diderot, France

25/04/2017 Journée-séminaire de combinatoire (talk), Université Paris 13, France

09/02/2017 Séminaires d’Informatique Théorique (talk), DI Université de Rouen, France

Home Publications TalksNicolas Behr

© 2018-2021 Nicolas Behr

Published with Wowchemy — the free, open source website builder that empowers creators.

Nicolas Behr
CNRS Researcher in Computer Science

Université de Paris, CNRS, IRIF, France

! " # !

Biography
I am a CNRS researcher in theoretical computer science at IRIF, Université de Paris. Previously, I have been a Short-Term

Fellow at CRI Paris in spring and summer of 2020, working on the development of tracelet-analysis algorithms for the

biochemistry platform Kappa and for the organo-chemistry platform MØD. I previously held a Marie Skłodowska-Curie

Individual Fellowship (2017-2019), working in the Ueld of theoretical computer science at IRIF, Université Paris Diderot.

The aim of my project with Jean Krivine (IRIF) consisted in developing extensions of my rule-algebraic framework to

restricted variants of rewriting and to the biochemical reaction language Kappa. I am also frequently to be found at the

LPTMC of the UPMC/Sorbonne/Paris 06, working with Gérard H.E. Duchamp (Paris 13) and Karol A. Penson (Paris 6) on

topics in combinatorics. My previous positions include a Postdoc position with Vincent Danos at ENS Paris and at

University of Edinburgh (2014-2017) and a Postdoc position in mathematical physics with Anatoly Konechny at Heriot-

Watt University in Edinburgh (2011-2014).

Together with Reiko Heckel and Jean Krivine, I am organizing the GReTA - Graph Transformation Theory and
Applications online seminar series - see www.irif.fr/~greta for more information and seminar announcements.

Software

Based upon joint work with Reiko Heckel and Maryam Ghaffari Saadat (University of Leicester), I am developing the

ReSMT Python package, which aims to implement rewriting-theoretic concepts via utilizing the Microsoft Z3 theorem

prover as the computational core. At present (v. 0.0.3), the package covers typed directed multigraphs (TDGs) with

structural constraints as its base datatype, with some of the key operations implemented including the search for

partial overlaps of TDGs modulo structural constraints formulated via forbidden pattern non-embedding assertions.

Project repository: https://gitlab.com/nicolasbehr/ReSMT

Documentation: online | PDF | installation instructions | gallery of examples

Selected Talks & Activities

30/11 - 02/12/2021 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

05/11/2021 “GReTA international online seminar series” (talk; Zoom registration, YouTube livestream), online

12 - 16/07/2021 4th International Conference on Applied Category Theory (ACT 2021) (distinguished talk; video, slides, paper), online

24 - 25/06/2021 14th International Conference on Graph Transformation (ICGT 2021) (talk; paper, slides), online

22/06/2021 Twelfth International Workshop on Graph Computation Models (GCM 2021) (paper), online

11/06/2021 Algebraic and Combinatorial Perspectives in the Mathematical Sciences (ACPMS) seminar (talk), online
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30/11 - 02/12/2021 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études

ScientiUques (IHÉS), Bures sur Yvette, France

05/11/2021 “GReTA international online seminar series” (talk; Zoom registration, YouTube livestream), online

12 - 16/07/2021 4th International Conference on Applied Category Theory (ACT 2021) (distinguished talk; video, slides, paper), online

24 - 25/06/2021 14th International Conference on Graph Transformation (ICGT 2021) (talk; paper, slides), online

22/06/2021 Twelfth International Workshop on Graph Computation Models (GCM 2021) (paper), online

11/06/2021 Algebraic and Combinatorial Perspectives in the Mathematical Sciences (ACPMS) seminar (talk), online

29/03/2021 LACL seminar (talk), Laboratoire d’Algorithmique, Complexité et Logique, Creteil, France

09/03/2021 Journée-séminaire de combinatoire, CALIN, Université Paris 13 (talk), online

10 - 11/12/2020 “Species and operads in combinatorics and semantics” workshop (talk; slides), IRIF, Université de Paris, France

02 – 03/12/2020 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk; video), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

15/10/2020 Journées de rentrée PPS (talk), IRIF, Université de Paris, France

20/07/2020 CRI Research Collaboratory seminar (talk), Centre de Recherches Interdisciplinaires (CRI), Paris, France

5/07/2020 TERMGRAPH 2020: 11th International Workshop on Computing with Terms and Graphs (invited talk), online event

25 - 26/06/2020 ICGT 2020: 13th International Conference on Graph Transformation (talk), online event

24/06/2020 GCM 2020: Eleventh International Workshop on Graph Computation Models (talk), online event

14 - 15/05/2020 POSTPONED to spring 2021 due to COVID-19 pandemic Colloquium “La biologie et la chimie de l’information”
(invited talk), Collège de France, Paris, France

05/03/2020 Computer Science Colloquium (talk), University of Southern Denmark, Odense, Denmark

21/02/2020 Informatics Seminar (talk), University of Leicester, UK

26/11/2019 LSV Seminar, Laboratoire SpéciUcation et VériUcation, ENS Paris-Saclay, Cachan, France

21/11/2019 Software Science Departmental seminar (talk), School of Information Technologies, TalTech, Tallinn, Estonia

06 - 08/11/2019 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

25/10/2019 FIAS CEF Symposium (talk), Frankfurt Institute for Advanced Studies, Germany

14/10/2019 seminar of the Research Group Theoretical Computer Science (talk), Universität Bremen, Germany

3/10/2019 PPS seminar (talk), IRIF, Université Paris Diderot, France

22 - 26/07/2019 15th International Symposium on Orthogonal Polynomials, Special Functions and Applications (OPSFA'15) (invited
talk; slides, video), Research Institute for Symbolic Computation (RISC), Hagenberg, Austria

17/07/2019 Tenth International Workshop on Graph Computation Models (GCM 2019) (talk; slides), Eindhoven University of
Technology, Eindhoven, The Netherlands

15 - 19/07/2019 Applied Category Theory Conference (ACT 2019), University of Oxford (talk; slides, video), Oxford, United Kingdom

28/05 - 02/ 06/2019 27th Foundational Methods in Computer Science Workshop (FMCS 2019; talk), University of Calgary, Alberta,
Canada

06 - 07/ 05/2019 Tokenomics, International Conference on Blockchain Economics, Security and Protocols, ENS Paris, France

18 - 22/03/2019 Journées Aléa 2019, Centre International de Rencontres Mathématiques (CIRM), Marseille, France

19/02/2019 Calcul Natural (CANA) seminar (talk), Laboratoire d’Informatique Fondamentale de Marseille (LIF), Marseille, France

12 - 16/11/2018 Rencontres du GDR Renormalisation, Laboratoire de Mathématiques Blaise Pascal, Clermont-Ferrand, France

8 - 9/11/2018 Journées PPS (talk), IRIF, Université Paris Diderot, France

31/10/2018 Seminar of the Équipe Antique (talk), DI-ENS, Paris, France

24 - 25/10/2018 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

10 - 11/10/2018 Emergent Algorithms and Network Dynamics workshop (invited talk; slides), Institut Henri-Poincaré, Paris, France

01/10/2018 Séminaires du LPTMC, Sorbonne Université (Paris 6) (talk), France

09 - 12/09/2018 81st Séminaire Lotharingien de combinatoire (KrattenthalerFest), Strobl, Austria

04 - 07/09/2018 Computer Science Logic 2018 conference (talk), School of Computer Science of the University of Birmingham, UK

15 - 21/07/2018 18th Workshop: Noncommutative Probability, Operators Algebras, Random Matrices and Related Topics, with
Applications (talk), Stefan Banach Conference Center of the Polish Academy of Sciences, Będlewo, Poland

29/05/2018 Journée-séminaire de combinatoire, Université Paris 13 (talk), France

13/02/2018 Séminaire Systèmes complexes, IRIF, Université Paris Diderot (talk), France

05/02/2018 Seminario di ENEA, Centro Ricerche Frascati, Rome (talk), Italy

11 - 12/01/2018 International Conference on Combinatorics and Physics (Penson71Fest) (invited talk), Polish Academy of Sciences
Paris, France

09 - 10/11/2017 Combinatorics and Arithmetic for Physics: special days workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

06/11/2017 IRIF Newcomers Day (talk), IRIF, Université Paris Diderot, France

18/10/2018 Équipe de travail “Analyse et conception de systèmes” (talk), IRIF, Université Paris Diderot, France

25/04/2017 Journée-séminaire de combinatoire (talk), Université Paris 13, France

09/02/2017 Séminaires d’Informatique Théorique (talk), DI Université de Rouen, France
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Biography
I am a CNRS researcher in theoretical computer science at IRIF, Université de Paris. Previously, I have been a Short-Term

Fellow at CRI Paris in spring and summer of 2020, working on the development of tracelet-analysis algorithms for the

biochemistry platform Kappa and for the organo-chemistry platform MØD. I previously held a Marie Skłodowska-Curie

Individual Fellowship (2017-2019), working in the Ueld of theoretical computer science at IRIF, Université Paris Diderot.

The aim of my project with Jean Krivine (IRIF) consisted in developing extensions of my rule-algebraic framework to

restricted variants of rewriting and to the biochemical reaction language Kappa. I am also frequently to be found at the

LPTMC of the UPMC/Sorbonne/Paris 06, working with Gérard H.E. Duchamp (Paris 13) and Karol A. Penson (Paris 6) on

topics in combinatorics. My previous positions include a Postdoc position with Vincent Danos at ENS Paris and at

University of Edinburgh (2014-2017) and a Postdoc position in mathematical physics with Anatoly Konechny at Heriot-

Watt University in Edinburgh (2011-2014).

Together with Reiko Heckel and Jean Krivine, I am organizing the GReTA - Graph Transformation Theory and
Applications online seminar series - see www.irif.fr/~greta for more information and seminar announcements.

Software

Based upon joint work with Reiko Heckel and Maryam Ghaffari Saadat (University of Leicester), I am developing the

ReSMT Python package, which aims to implement rewriting-theoretic concepts via utilizing the Microsoft Z3 theorem

prover as the computational core. At present (v. 0.0.3), the package covers typed directed multigraphs (TDGs) with

structural constraints as its base datatype, with some of the key operations implemented including the search for

partial overlaps of TDGs modulo structural constraints formulated via forbidden pattern non-embedding assertions.

Project repository: https://gitlab.com/nicolasbehr/ReSMT

Documentation: online | PDF | installation instructions | gallery of examples
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24/06/2020 GCM 2020: Eleventh International Workshop on Graph Computation Models (talk), online event

Interests

Stochastic rewriting systems

Combinatorics of dynamical systems

Moment bisimulations

Tracelets

Education

PhD in Mathematical Physics, 2012
Max Planck Institute for Gravitational Physics Golm and Humboldt University

Berlin

!

Diploma in Mathematical Physics, 2008
Max Planck Institute for Gravitational Physics Golm and Humboldt University

Berlin

!

Preprints and
Publications

!  Nicolas Behr, Jean Krivine, Jakob L. Andersen, Daniel Merkle (2021). Rewriting theory for the life sciences: A

unifying theory of CTMC semantics. In: Theoretical Computer Science.

PDF  Cite  Video

!  Nicolas Behr, Joachim Kock (2021). Tracelet Hopf algebras and decomposition spaces. In: arXiv preprint.

Preprint  Cite  Slides  Video

!  Nicolas Behr, Russ Harmer, Jean Krivine (2021). Concurrency Theorems for Non-linear Rewriting Theories. In:

arXiv preprint (long version including additional technical appendices of a paper with the same title accepted for ICGT

2021).

Preprint  Cite  Slides

!  Nicolas Behr, Stefan Fredenhagen (2021). Fusion of interfaces in Landau-Ginzburg models: a functorial approach.

In: J. High Energ. Phys. 2021, 235 (2021)..

PDF  Cite

!  Nicolas Behr, Jean Krivine (2021). Compositionality of Rewriting Rules with Conditions. Compositionality 3, 2

(2021)..

PDF  Cite

!  Nicolas Behr (2021). On Stochastic Rewriting and Combinatorics via Rule-Algebraic Methods. Invited Paper in

Patrick Bahr (ed.): Proceedings 11th International Workshop on Computing with Terms and Graphs (TERMGRAPH

2020), Online, 5th July 2020, Electronic Proceedings in Theoretical Computer Science 334, pp. 11–28..

PDF  Cite

!  Nicolas Behr, Maryam Ghaffari Saadat, Reiko Heckel (2020). Escient Computation of Graph Overlaps for Rule

Composition: Theory and Z3 Prototyping. In: B. Hoffmann and M. Minas: Proceedings of the Eleventh International

Workshop on Graph Computation Models (GCM 2020), Online-Workshop, 24th June 2020, Electronic Proceedings in

Theoretical Computer Science 330, pp. 126–144..

PDF  Cite

!  Nicolas Behr (2020). Tracelets and Tracelet Analysis Of Compositional Rewriting Systems. In: John Baez and Bob

Coecke: Proceedings Applied Category Theory 2019 (ACT 2019), University of Oxford, UK, 15-19 July 2019, Electronic

Proceedings in Theoretical Computer Science 323, pp. 44-71..

PDF  Cite  Slides  Video

!  Nicolas Behr, Vincent Danos, Ilias Garnier (2020). Combinatorial Conversion and Moment Bisimulation for

Stochastic Rewriting Systems. In: Logical Methods in Computer Science, Volume 16, Issue 3.

PDF  Cite  Slides

!  Nicolas Behr, Pawel Sobocinski (2020). Rule Algebras for Adhesive Categories (invited extended jounral version).

In: Logical Methods in Computer Science, Volume 16, Issue 3.

PDF  Cite

!  Nicolas Behr, Jean Krivine (2020). Rewriting Theory for the Life Sciences: A Unifying Theory of CTMC Semantics.

Graph Transformation, 13th International Conference, ICGT 2020, Proceedings, volume 12150 of Theoretical Computer

Science and General Issues, Springer International Publishing.

Preprint  PDF  Cite

!  Nicolas Behr (2019). Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework. Electronic

Proceedings in Theoretical Computer Science, 309:23–52.

PDF  Cite  Slides

!  Nicolas Behr, Giuseppe Dattoli, Ambra Lattanzi, Silvia Licciardi (2019). Dual Numbers and Operational Umbral

Methods. In: Axioms, 8(3):77.

PDF  Cite

!  Nicolas Behr, Giuseppe Dattoli, Ambra Lattanzi (2019). Operator Ordering and Solution of Pseudo-Evolutionary

Equations. In: Axioms, 8(1), p.35.

PDF  Cite

!  Nicolas Behr, Giuseppe Dattoli, Gérard H.E. Duchamp, Silvia Licciardi, Karol A. Penson (2019). Operational

Methods in the Study of Sobolev-Jacobi Polynomials. In: Mathematics, (7), 2, pp. 124.

PDF  Cite  Slides  Video

!  Nicolas Behr, Pawel Sobocinski (2018). Rule Algebras for Adhesive Categories. In: 27th EACSL Annual Conference

on Computer Science Logic (CSL 2018), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp.
11:1–11:21.

PDF  Cite  Slides

!  Nicolas Behr, Gérard H.E. Duchamp, Karol A. Penson (2018). Explicit formulae for all higher order exponential

lacunary generating functions of Hermite polynomials. In: arXiv preprint.

Preprint  PDF  Cite  Slides

!  Nicolas Behr, Gérard H.E. Duchamp, Karol A. Penson (2017). Combinatorics of chemical reaction systems. In:

arXiv preprint.

Preprint  PDF  Cite  Slides

!  Nicolas Behr, Vincent Danos, Ilias Garnier, Tobias Heindel (2016). The algebras of graph rewriting. In: arXiv

preprint.

Preprint  PDF  Cite  Slides  Video

!  Nicolas Behr, Vincent Danos, Ilias Garnier (2016). Stochastic mechanics of graph rewriting. In: Proceedings of the

31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ‘16, ACM Press.

Preprint  PDF  Cite  Slides

!  Nicolas Behr, Ayan Mukhopadhyay (2016). Holography as a highly escient renormalization group uow. II. An

explicit construction. In: Physical Review D, (94), 2.

Preprint  PDF  Cite

!  Nicolas Behr, Stanislav Kuperstein, Ayan Mukhopadhyay (2016). Holography as a highly escient renormalization

group uow. I. Rephrasing gravity. In: Physical Review D, (94), 2.

Preprint  PDF  Cite

!  Nicolas Behr, Stefan Fredenhagen (2015). Matrix factorisations for rational boundary conditions by defect fusion.

In: Journal of High Energy Physics, (2015), 5.

Preprint  PDF  Cite

!  Nicolas Behr, Anatoly Konechny (2014). Renormalization and redundancy in 2d quantum Ueld theories. In: Journal

of High Energy Physics, (2014), 2.

Preprint  PDF  Cite  Slides

!  Nicolas Behr, Stefan Fredenhagen (2012). Variable transformation defects. Proceedings of Symposia in Pure

Mathematics, Volume 85.

Preprint  PDF  Cite

!  Roland Bartmann, Nicolas Behr, Andre Hilger, Thomas Krist (2011). New solid state lens for reuective neutron

focusing. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors

and Associated Equipment, (634), 1, pp. S104–S107.

PDF  Cite

!  Nicolas Behr, Stefan Fredenhagen (2010). D-branes and matrix factorisations in supersymmetric coset models. In:

Journal of High Energy Physics, 11, (2010)136.

Preprint  PDF  Cite

!  Nicolas Behr, Markus B. Raschke (2008). Optical Antenna Properties of Scanning Probe Tips: Plasmonic Light

Scattering, Tip-Sample Coupling, and Near-Field Enhancement. In: The Journal of Physical Chemistry C, (112), 10, pp.

3766–3773.

PDF  Cite

!  Catalin C. Neacsu, Jens Dreyer, Nicolas Behr, Markus B. Raschke (2007). Reply to ``Comment on `Scanning-

probe Raman spectroscopy with single-molecule sensitivity' ''. In: Phys. Rev. B, (75), pp. 236402.

PDF  Cite

!  Catalin C. Neacsu, Jens Dreyer, Nicolas Behr, Markus B. Raschke (2006). Scanning-probe Raman spectroscopy

with single-molecule sensitivity. In: Physical Review B, (73), 19.

PDF  Cite

!  Catalin C. Neacsu, Jens Dreyer, Nicolas Behr, Markus B. Raschke (2006). Ultrahigh resolution scattering near-

Ueld vibrational microscopy with single molecule sensitivity. In: 2006 Conference on Lasers and Electro-Optics and 2006

Quantum Electronics and Laser Science Conference, IEEE.

PDF  Cite

Talks & Activities
30/11 - 02/12/2021 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études

ScientiUques (IHÉS), Bures sur Yvette, France

05/11/2021 “GReTA international online seminar series” (talk; Zoom registration, YouTube livestream), online

12 - 16/07/2021 4th International Conference on Applied Category Theory (ACT 2021) (distinguished talk; video, slides, paper), online

24 - 25/06/2021 14th International Conference on Graph Transformation (ICGT 2021) (talk; paper, slides), online

22/06/2021 Twelfth International Workshop on Graph Computation Models (GCM 2021) (paper), online

11/06/2021 Algebraic and Combinatorial Perspectives in the Mathematical Sciences (ACPMS) seminar (talk), online

29/03/2021 LACL seminar (talk), Laboratoire d’Algorithmique, Complexité et Logique, Creteil, France

09/03/2021 Journée-séminaire de combinatoire, CALIN, Université Paris 13 (talk), online

10 - 11/12/2020 “Species and operads in combinatorics and semantics” workshop (talk; slides), IRIF, Université de Paris, France

02 – 03/12/2020 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk; video), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

15/10/2020 Journées de rentrée PPS (talk), IRIF, Université de Paris, France

20/07/2020 CRI Research Collaboratory seminar (talk), Centre de Recherches Interdisciplinaires (CRI), Paris, France

5/07/2020 TERMGRAPH 2020: 11th International Workshop on Computing with Terms and Graphs (invited talk), online event

25 - 26/06/2020 ICGT 2020: 13th International Conference on Graph Transformation (talk), online event

24/06/2020 GCM 2020: Eleventh International Workshop on Graph Computation Models (talk), online event

14 - 15/05/2020 POSTPONED to spring 2021 due to COVID-19 pandemic Colloquium “La biologie et la chimie de l’information”
(invited talk), Collège de France, Paris, France

05/03/2020 Computer Science Colloquium (talk), University of Southern Denmark, Odense, Denmark

21/02/2020 Informatics Seminar (talk), University of Leicester, UK

26/11/2019 LSV Seminar, Laboratoire SpéciUcation et VériUcation, ENS Paris-Saclay, Cachan, France

21/11/2019 Software Science Departmental seminar (talk), School of Information Technologies, TalTech, Tallinn, Estonia

06 - 08/11/2019 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

25/10/2019 FIAS CEF Symposium (talk), Frankfurt Institute for Advanced Studies, Germany

14/10/2019 seminar of the Research Group Theoretical Computer Science (talk), Universität Bremen, Germany

3/10/2019 PPS seminar (talk), IRIF, Université Paris Diderot, France

22 - 26/07/2019 15th International Symposium on Orthogonal Polynomials, Special Functions and Applications (OPSFA'15) (invited
talk; slides, video), Research Institute for Symbolic Computation (RISC), Hagenberg, Austria

17/07/2019 Tenth International Workshop on Graph Computation Models (GCM 2019) (talk; slides), Eindhoven University of
Technology, Eindhoven, The Netherlands

15 - 19/07/2019 Applied Category Theory Conference (ACT 2019), University of Oxford (talk; slides, video), Oxford, United Kingdom

28/05 - 02/ 06/2019 27th Foundational Methods in Computer Science Workshop (FMCS 2019; talk), University of Calgary, Alberta,
Canada

06 - 07/ 05/2019 Tokenomics, International Conference on Blockchain Economics, Security and Protocols, ENS Paris, France

18 - 22/03/2019 Journées Aléa 2019, Centre International de Rencontres Mathématiques (CIRM), Marseille, France

19/02/2019 Calcul Natural (CANA) seminar (talk), Laboratoire d’Informatique Fondamentale de Marseille (LIF), Marseille, France

12 - 16/11/2018 Rencontres du GDR Renormalisation, Laboratoire de Mathématiques Blaise Pascal, Clermont-Ferrand, France

8 - 9/11/2018 Journées PPS (talk), IRIF, Université Paris Diderot, France

31/10/2018 Seminar of the Équipe Antique (talk), DI-ENS, Paris, France

24 - 25/10/2018 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

10 - 11/10/2018 Emergent Algorithms and Network Dynamics workshop (invited talk; slides), Institut Henri-Poincaré, Paris, France

01/10/2018 Séminaires du LPTMC, Sorbonne Université (Paris 6) (talk), France

09 - 12/09/2018 81st Séminaire Lotharingien de combinatoire (KrattenthalerFest), Strobl, Austria

04 - 07/09/2018 Computer Science Logic 2018 conference (talk), School of Computer Science of the University of Birmingham, UK

15 - 21/07/2018 18th Workshop: Noncommutative Probability, Operators Algebras, Random Matrices and Related Topics, with
Applications (talk), Stefan Banach Conference Center of the Polish Academy of Sciences, Będlewo, Poland

29/05/2018 Journée-séminaire de combinatoire, Université Paris 13 (talk), France

13/02/2018 Séminaire Systèmes complexes, IRIF, Université Paris Diderot (talk), France

05/02/2018 Seminario di ENEA, Centro Ricerche Frascati, Rome (talk), Italy

11 - 12/01/2018 International Conference on Combinatorics and Physics (Penson71Fest) (invited talk), Polish Academy of Sciences
Paris, France

09 - 10/11/2017 Combinatorics and Arithmetic for Physics: special days workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

06/11/2017 IRIF Newcomers Day (talk), IRIF, Université Paris Diderot, France

18/10/2018 Équipe de travail “Analyse et conception de systèmes” (talk), IRIF, Université Paris Diderot, France

25/04/2017 Journée-séminaire de combinatoire (talk), Université Paris 13, France

09/02/2017 Séminaires d’Informatique Théorique (talk), DI Université de Rouen, France
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Biography
I am a CNRS researcher in theoretical computer science at IRIF, Université de Paris. Previously, I have been a Short-Term

Fellow at CRI Paris in spring and summer of 2020, working on the development of tracelet-analysis algorithms for the

biochemistry platform Kappa and for the organo-chemistry platform MØD. I previously held a Marie Skłodowska-Curie

Individual Fellowship (2017-2019), working in the Ueld of theoretical computer science at IRIF, Université Paris Diderot.

The aim of my project with Jean Krivine (IRIF) consisted in developing extensions of my rule-algebraic framework to

restricted variants of rewriting and to the biochemical reaction language Kappa. I am also frequently to be found at the

LPTMC of the UPMC/Sorbonne/Paris 06, working with Gérard H.E. Duchamp (Paris 13) and Karol A. Penson (Paris 6) on

topics in combinatorics. My previous positions include a Postdoc position with Vincent Danos at ENS Paris and at

University of Edinburgh (2014-2017) and a Postdoc position in mathematical physics with Anatoly Konechny at Heriot-

Watt University in Edinburgh (2011-2014).

Together with Reiko Heckel and Jean Krivine, I am organizing the GReTA - Graph Transformation Theory and
Applications online seminar series - see www.irif.fr/~greta for more information and seminar announcements.

Software

Based upon joint work with Reiko Heckel and Maryam Ghaffari Saadat (University of Leicester), I am developing the

ReSMT Python package, which aims to implement rewriting-theoretic concepts via utilizing the Microsoft Z3 theorem

prover as the computational core. At present (v. 0.0.3), the package covers typed directed multigraphs (TDGs) with

structural constraints as its base datatype, with some of the key operations implemented including the search for

partial overlaps of TDGs modulo structural constraints formulated via forbidden pattern non-embedding assertions.

Project repository: https://gitlab.com/nicolasbehr/ReSMT

Documentation: online | PDF | installation instructions | gallery of examples
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30/11 - 02/12/2021 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

05/11/2021 “GReTA international online seminar series” (talk; Zoom registration, YouTube livestream), online

12 - 16/07/2021 4th International Conference on Applied Category Theory (ACT 2021) (distinguished talk; video, slides, paper), online

24 - 25/06/2021 14th International Conference on Graph Transformation (ICGT 2021) (talk; paper, slides), online

22/06/2021 Twelfth International Workshop on Graph Computation Models (GCM 2021) (paper), online

11/06/2021 Algebraic and Combinatorial Perspectives in the Mathematical Sciences (ACPMS) seminar (talk), online

29/03/2021 LACL seminar (talk), Laboratoire d’Algorithmique, Complexité et Logique, Creteil, France

09/03/2021 Journée-séminaire de combinatoire, CALIN, Université Paris 13 (talk), online

10 - 11/12/2020 “Species and operads in combinatorics and semantics” workshop (talk; slides), IRIF, Université de Paris, France

02 - 03/12/2020 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk; video), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

15/10/2020 Journées de rentrée PPS (talk), IRIF, Université de Paris, France

20/07/2020 CRI Research Collaboratory seminar (talk), Centre de Recherches Interdisciplinaires (CRI), Paris, France

5/07/2020 TERMGRAPH 2020: 11th International Workshop on Computing with Terms and Graphs (invited talk), online event

25 - 26/06/2020 ICGT 2020: 13th International Conference on Graph Transformation (talk), online event

24/06/2020 GCM 2020: Eleventh International Workshop on Graph Computation Models (talk), online event

Interests

Stochastic rewriting systems

Combinatorics of dynamical systems

Moment bisimulations

Tracelets

Education

PhD in Mathematical Physics, 2012
Max Planck Institute for Gravitational Physics Golm and Humboldt University

Berlin

!

Diploma in Mathematical Physics, 2008
Max Planck Institute for Gravitational Physics Golm and Humboldt University

Berlin

!

Preprints and
Publications
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!  Nicolas Behr, Russ Harmer, Jean Krivine (2021). Concurrency Theorems for Non-linear Rewriting Theories. In:

arXiv preprint (long version including additional technical appendices of a paper with the same title accepted for ICGT

2021).
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!  Nicolas Behr, Stefan Fredenhagen (2021). Fusion of interfaces in Landau-Ginzburg models: a functorial approach.
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!  Nicolas Behr, Giuseppe Dattoli, Ambra Lattanzi, Silvia Licciardi (2019). Dual Numbers and Operational Umbral

Methods. In: Axioms, 8(3):77.

PDF  Cite

!  Nicolas Behr, Giuseppe Dattoli, Ambra Lattanzi (2019). Operator Ordering and Solution of Pseudo-Evolutionary

Equations. In: Axioms, 8(1), p.35.

PDF  Cite

!  Nicolas Behr, Giuseppe Dattoli, Gérard H.E. Duchamp, Silvia Licciardi, Karol A. Penson (2019). Operational

Methods in the Study of Sobolev-Jacobi Polynomials. In: Mathematics, (7), 2, pp. 124.

PDF  Cite  Slides  Video

!  Nicolas Behr, Pawel Sobocinski (2018). Rule Algebras for Adhesive Categories. In: 27th EACSL Annual Conference

on Computer Science Logic (CSL 2018), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp.
11:1–11:21.

PDF  Cite  Slides

!  Nicolas Behr, Gérard H.E. Duchamp, Karol A. Penson (2018). Explicit formulae for all higher order exponential

lacunary generating functions of Hermite polynomials. In: arXiv preprint.
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31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ‘16, ACM Press.
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explicit construction. In: Physical Review D, (94), 2.
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group uow. I. Rephrasing gravity. In: Physical Review D, (94), 2.
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!  Nicolas Behr, Stefan Fredenhagen (2015). Matrix factorisations for rational boundary conditions by defect fusion.

In: Journal of High Energy Physics, (2015), 5.
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!  Nicolas Behr, Anatoly Konechny (2014). Renormalization and redundancy in 2d quantum Ueld theories. In: Journal

of High Energy Physics, (2014), 2.
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!  Nicolas Behr, Stefan Fredenhagen (2012). Variable transformation defects. Proceedings of Symposia in Pure

Mathematics, Volume 85.

Preprint  PDF  Cite
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30/11 - 02/12/2021 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études

ScientiUques (IHÉS), Bures sur Yvette, France

05/11/2021 “GReTA international online seminar series” (talk; Zoom registration, YouTube livestream), online

12 - 16/07/2021 4th International Conference on Applied Category Theory (ACT 2021) (distinguished talk; video, slides, paper), online

24 - 25/06/2021 14th International Conference on Graph Transformation (ICGT 2021) (talk; paper, slides), online

22/06/2021 Twelfth International Workshop on Graph Computation Models (GCM 2021) (paper), online

11/06/2021 Algebraic and Combinatorial Perspectives in the Mathematical Sciences (ACPMS) seminar (talk), online

29/03/2021 LACL seminar (talk), Laboratoire d’Algorithmique, Complexité et Logique, Creteil, France

09/03/2021 Journée-séminaire de combinatoire, CALIN, Université Paris 13 (talk), online

10 - 11/12/2020 “Species and operads in combinatorics and semantics” workshop (talk; slides), IRIF, Université de Paris, France

02 – 03/12/2020 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk; video), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

15/10/2020 Journées de rentrée PPS (talk), IRIF, Université de Paris, France

20/07/2020 CRI Research Collaboratory seminar (talk), Centre de Recherches Interdisciplinaires (CRI), Paris, France

5/07/2020 TERMGRAPH 2020: 11th International Workshop on Computing with Terms and Graphs (invited talk), online event

25 - 26/06/2020 ICGT 2020: 13th International Conference on Graph Transformation (talk), online event

24/06/2020 GCM 2020: Eleventh International Workshop on Graph Computation Models (talk), online event

14 - 15/05/2020 POSTPONED to spring 2021 due to COVID-19 pandemic Colloquium “La biologie et la chimie de l’information”
(invited talk), Collège de France, Paris, France

05/03/2020 Computer Science Colloquium (talk), University of Southern Denmark, Odense, Denmark

21/02/2020 Informatics Seminar (talk), University of Leicester, UK

26/11/2019 LSV Seminar, Laboratoire SpéciUcation et VériUcation, ENS Paris-Saclay, Cachan, France

21/11/2019 Software Science Departmental seminar (talk), School of Information Technologies, TalTech, Tallinn, Estonia

06 - 08/11/2019 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

25/10/2019 FIAS CEF Symposium (talk), Frankfurt Institute for Advanced Studies, Germany

14/10/2019 seminar of the Research Group Theoretical Computer Science (talk), Universität Bremen, Germany

3/10/2019 PPS seminar (talk), IRIF, Université Paris Diderot, France

22 - 26/07/2019 15th International Symposium on Orthogonal Polynomials, Special Functions and Applications (OPSFA'15) (invited
talk; slides, video), Research Institute for Symbolic Computation (RISC), Hagenberg, Austria

17/07/2019 Tenth International Workshop on Graph Computation Models (GCM 2019) (talk; slides), Eindhoven University of
Technology, Eindhoven, The Netherlands

15 - 19/07/2019 Applied Category Theory Conference (ACT 2019), University of Oxford (talk; slides, video), Oxford, United Kingdom

28/05 - 02/ 06/2019 27th Foundational Methods in Computer Science Workshop (FMCS 2019; talk), University of Calgary, Alberta,
Canada

06 - 07/ 05/2019 Tokenomics, International Conference on Blockchain Economics, Security and Protocols, ENS Paris, France

18 - 22/03/2019 Journées Aléa 2019, Centre International de Rencontres Mathématiques (CIRM), Marseille, France

19/02/2019 Calcul Natural (CANA) seminar (talk), Laboratoire d’Informatique Fondamentale de Marseille (LIF), Marseille, France

12 - 16/11/2018 Rencontres du GDR Renormalisation, Laboratoire de Mathématiques Blaise Pascal, Clermont-Ferrand, France

8 - 9/11/2018 Journées PPS (talk), IRIF, Université Paris Diderot, France

31/10/2018 Seminar of the Équipe Antique (talk), DI-ENS, Paris, France

24 - 25/10/2018 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

10 - 11/10/2018 Emergent Algorithms and Network Dynamics workshop (invited talk; slides), Institut Henri-Poincaré, Paris, France

01/10/2018 Séminaires du LPTMC, Sorbonne Université (Paris 6) (talk), France

09 - 12/09/2018 81st Séminaire Lotharingien de combinatoire (KrattenthalerFest), Strobl, Austria

04 - 07/09/2018 Computer Science Logic 2018 conference (talk), School of Computer Science of the University of Birmingham, UK

15 - 21/07/2018 18th Workshop: Noncommutative Probability, Operators Algebras, Random Matrices and Related Topics, with
Applications (talk), Stefan Banach Conference Center of the Polish Academy of Sciences, Będlewo, Poland

29/05/2018 Journée-séminaire de combinatoire, Université Paris 13 (talk), France

13/02/2018 Séminaire Systèmes complexes, IRIF, Université Paris Diderot (talk), France

05/02/2018 Seminario di ENEA, Centro Ricerche Frascati, Rome (talk), Italy

11 - 12/01/2018 International Conference on Combinatorics and Physics (Penson71Fest) (invited talk), Polish Academy of Sciences
Paris, France

09 - 10/11/2017 Combinatorics and Arithmetic for Physics: special days workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

06/11/2017 IRIF Newcomers Day (talk), IRIF, Université Paris Diderot, France

18/10/2018 Équipe de travail “Analyse et conception de systèmes” (talk), IRIF, Université Paris Diderot, France

25/04/2017 Journée-séminaire de combinatoire (talk), Université Paris 13, France

09/02/2017 Séminaires d’Informatique Théorique (talk), DI Université de Rouen, France
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Together with Reiko Heckel and Jean Krivine, I am organizing the GReTA - Graph Transformation Theory and
Applications online seminar series - see www.irif.fr/~greta for more information and seminar announcements.

Software

Based upon joint work with Reiko Heckel and Maryam Ghaffari Saadat (University of Leicester), I am developing the

ReSMT Python package, which aims to implement rewriting-theoretic concepts via utilizing the Microsoft Z3 theorem

prover as the computational core. At present (v. 0.0.3), the package covers typed directed multigraphs (TDGs) with

structural constraints as its base datatype, with some of the key operations implemented including the search for

partial overlaps of TDGs modulo structural constraints formulated via forbidden pattern non-embedding assertions.

Project repository: https://gitlab.com/nicolasbehr/ReSMT

Documentation: online | PDF | installation instructions | gallery of examples
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31/10/2018 Seminar of the Équipe Antique (talk), DI-ENS, Paris, France

24 - 25/10/2018 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

10 - 11/10/2018 Emergent Algorithms and Network Dynamics workshop (invited talk; slides), Institut Henri-Poincaré, Paris, France

01/10/2018 Séminaires du LPTMC, Sorbonne Université (Paris 6) (talk), France

09 - 12/09/2018 81st Séminaire Lotharingien de combinatoire (KrattenthalerFest), Strobl, Austria

04 - 07/09/2018 Computer Science Logic 2018 conference (talk), School of Computer Science of the University of Birmingham, UK

15 - 21/07/2018 18th Workshop: Noncommutative Probability, Operators Algebras, Random Matrices and Related Topics, with
Applications (talk), Stefan Banach Conference Center of the Polish Academy of Sciences, Będlewo, Poland

29/05/2018 Journée-séminaire de combinatoire, Université Paris 13 (talk), France

13/02/2018 Séminaire Systèmes complexes, IRIF, Université Paris Diderot (talk), France

05/02/2018 Seminario di ENEA, Centro Ricerche Frascati, Rome (talk), Italy

11 - 12/01/2018 International Conference on Combinatorics and Physics (Penson71Fest) (invited talk), Polish Academy of Sciences
Paris, France

09 - 10/11/2017 Combinatorics and Arithmetic for Physics: special days workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

06/11/2017 IRIF Newcomers Day (talk), IRIF, Université Paris Diderot, France

18/10/2018 Équipe de travail “Analyse et conception de systèmes” (talk), IRIF, Université Paris Diderot, France

25/04/2017 Journée-séminaire de combinatoire (talk), Université Paris 13, France

09/02/2017 Séminaires d’Informatique Théorique (talk), DI Université de Rouen, France
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Fellow at CRI Paris in spring and summer of 2020, working on the development of tracelet-analysis algorithms for the
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LPTMC of the UPMC/Sorbonne/Paris 06, working with Gérard H.E. Duchamp (Paris 13) and Karol A. Penson (Paris 6) on
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Together with Reiko Heckel and Jean Krivine, I am organizing the GReTA - Graph Transformation Theory and
Applications online seminar series - see www.irif.fr/~greta for more information and seminar announcements.

Software

Based upon joint work with Reiko Heckel and Maryam Ghaffari Saadat (University of Leicester), I am developing the

ReSMT Python package, which aims to implement rewriting-theoretic concepts via utilizing the Microsoft Z3 theorem

prover as the computational core. At present (v. 0.0.3), the package covers typed directed multigraphs (TDGs) with

structural constraints as its base datatype, with some of the key operations implemented including the search for

partial overlaps of TDGs modulo structural constraints formulated via forbidden pattern non-embedding assertions.

Project repository: https://gitlab.com/nicolasbehr/ReSMT

Documentation: online | PDF | installation instructions | gallery of examples
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ScientiUques (IHÉS), Bures sur Yvette, France

05/11/2021 “GReTA international online seminar series” (talk; Zoom registration, YouTube livestream), online

12 - 16/07/2021 4th International Conference on Applied Category Theory (ACT 2021) (distinguished talk; video, slides, paper), online

24 - 25/06/2021 14th International Conference on Graph Transformation (ICGT 2021) (talk; paper, slides), online

22/06/2021 Twelfth International Workshop on Graph Computation Models (GCM 2021) (paper), online

11/06/2021 Algebraic and Combinatorial Perspectives in the Mathematical Sciences (ACPMS) seminar (talk), online

29/03/2021 LACL seminar (talk), Laboratoire d’Algorithmique, Complexité et Logique, Creteil, France

09/03/2021 Journée-séminaire de combinatoire, CALIN, Université Paris 13 (talk), online
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30/11 - 02/12/2021 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études

ScientiUques (IHÉS), Bures sur Yvette, France

05/11/2021 “GReTA international online seminar series” (talk; Zoom registration, YouTube livestream), online

12 - 16/07/2021 4th International Conference on Applied Category Theory (ACT 2021) (distinguished talk; video, slides, paper), online

24 - 25/06/2021 14th International Conference on Graph Transformation (ICGT 2021) (talk; paper, slides), online

22/06/2021 Twelfth International Workshop on Graph Computation Models (GCM 2021) (paper), online

11/06/2021 Algebraic and Combinatorial Perspectives in the Mathematical Sciences (ACPMS) seminar (talk), online

29/03/2021 LACL seminar (talk), Laboratoire d’Algorithmique, Complexité et Logique, Creteil, France

09/03/2021 Journée-séminaire de combinatoire, CALIN, Université Paris 13 (talk), online

10 - 11/12/2020 “Species and operads in combinatorics and semantics” workshop (talk; slides), IRIF, Université de Paris, France

02 – 03/12/2020 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk; video), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

15/10/2020 Journées de rentrée PPS (talk), IRIF, Université de Paris, France

20/07/2020 CRI Research Collaboratory seminar (talk), Centre de Recherches Interdisciplinaires (CRI), Paris, France

5/07/2020 TERMGRAPH 2020: 11th International Workshop on Computing with Terms and Graphs (invited talk), online event

25 - 26/06/2020 ICGT 2020: 13th International Conference on Graph Transformation (talk), online event

24/06/2020 GCM 2020: Eleventh International Workshop on Graph Computation Models (talk), online event

14 - 15/05/2020 POSTPONED to spring 2021 due to COVID-19 pandemic Colloquium “La biologie et la chimie de l’information”
(invited talk), Collège de France, Paris, France

05/03/2020 Computer Science Colloquium (talk), University of Southern Denmark, Odense, Denmark

21/02/2020 Informatics Seminar (talk), University of Leicester, UK

26/11/2019 LSV Seminar, Laboratoire SpéciUcation et VériUcation, ENS Paris-Saclay, Cachan, France

21/11/2019 Software Science Departmental seminar (talk), School of Information Technologies, TalTech, Tallinn, Estonia

06 - 08/11/2019 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

25/10/2019 FIAS CEF Symposium (talk), Frankfurt Institute for Advanced Studies, Germany

14/10/2019 seminar of the Research Group Theoretical Computer Science (talk), Universität Bremen, Germany

3/10/2019 PPS seminar (talk), IRIF, Université Paris Diderot, France

22 - 26/07/2019 15th International Symposium on Orthogonal Polynomials, Special Functions and Applications (OPSFA'15) (invited
talk; slides, video), Research Institute for Symbolic Computation (RISC), Hagenberg, Austria

17/07/2019 Tenth International Workshop on Graph Computation Models (GCM 2019) (talk; slides), Eindhoven University of
Technology, Eindhoven, The Netherlands

15 - 19/07/2019 Applied Category Theory Conference (ACT 2019), University of Oxford (talk; slides, video), Oxford, United Kingdom

28/05 - 02/ 06/2019 27th Foundational Methods in Computer Science Workshop (FMCS 2019; talk), University of Calgary, Alberta,
Canada

06 - 07/ 05/2019 Tokenomics, International Conference on Blockchain Economics, Security and Protocols, ENS Paris, France

18 - 22/03/2019 Journées Aléa 2019, Centre International de Rencontres Mathématiques (CIRM), Marseille, France

19/02/2019 Calcul Natural (CANA) seminar (talk), Laboratoire d’Informatique Fondamentale de Marseille (LIF), Marseille, France

12 - 16/11/2018 Rencontres du GDR Renormalisation, Laboratoire de Mathématiques Blaise Pascal, Clermont-Ferrand, France

8 - 9/11/2018 Journées PPS (talk), IRIF, Université Paris Diderot, France

31/10/2018 Seminar of the Équipe Antique (talk), DI-ENS, Paris, France

24 - 25/10/2018 “Combinatorics and Arithmetic for Physics: special days” workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

10 - 11/10/2018 Emergent Algorithms and Network Dynamics workshop (invited talk; slides), Institut Henri-Poincaré, Paris, France

01/10/2018 Séminaires du LPTMC, Sorbonne Université (Paris 6) (talk), France

09 - 12/09/2018 81st Séminaire Lotharingien de combinatoire (KrattenthalerFest), Strobl, Austria

04 - 07/09/2018 Computer Science Logic 2018 conference (talk), School of Computer Science of the University of Birmingham, UK

15 - 21/07/2018 18th Workshop: Noncommutative Probability, Operators Algebras, Random Matrices and Related Topics, with
Applications (talk), Stefan Banach Conference Center of the Polish Academy of Sciences, Będlewo, Poland

29/05/2018 Journée-séminaire de combinatoire, Université Paris 13 (talk), France

13/02/2018 Séminaire Systèmes complexes, IRIF, Université Paris Diderot (talk), France

05/02/2018 Seminario di ENEA, Centro Ricerche Frascati, Rome (talk), Italy

11 - 12/01/2018 International Conference on Combinatorics and Physics (Penson71Fest) (invited talk), Polish Academy of Sciences
Paris, France

09 - 10/11/2017 Combinatorics and Arithmetic for Physics: special days workshop (invited talk), Institut des Hautes Études
ScientiUques (IHÉS), Bures sur Yvette, France

06/11/2017 IRIF Newcomers Day (talk), IRIF, Université Paris Diderot, France

18/10/2018 Équipe de travail “Analyse et conception de systèmes” (talk), IRIF, Université Paris Diderot, France

25/04/2017 Journée-séminaire de combinatoire (talk), Université Paris 13, France

09/02/2017 Séminaires d’Informatique Théorique (talk), DI Université de Rouen, France
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Together with Reiko Heckel and Jean Krivine, I am organizing the GReTA - Graph Transformation Theory and
Applications online seminar series - see www.irif.fr/~greta for more information and seminar announcements.

Software

Based upon joint work with Reiko Heckel and Maryam Ghaffari Saadat (University of Leicester), I am developing the

ReSMT Python package, which aims to implement rewriting-theoretic concepts via utilizing the Microsoft Z3 theorem

prover as the computational core. At present (v. 0.0.3), the package covers typed directed multigraphs (TDGs) with

structural constraints as its base datatype, with some of the key operations implemented including the search for

partial overlaps of TDGs modulo structural constraints formulated via forbidden pattern non-embedding assertions.

Project repository: https://gitlab.com/nicolasbehr/ReSMT
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ABSTRACT

We extend the notion of compositional associative rewriting as recently studied in the rule algebra
framework literature to the setting of rewriting rules with conditions. Our methodology is category-
theoretical in nature, where the definition of rule composition operations encodes the non-deterministic
sequential concurrent application of rules in Double-Pushout (DPO) and Sesqui-Pushout (SqPO)
rewriting with application conditions based upon M-adhesive categories. We uncover an intricate
interplay between the category-theoretical concepts of conditions on rules and morphisms, the
compositionality and compatibility of certain shift and transport constructions for conditions, and
thirdly the property of associativity of the composition of rules.
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The Kappa biochemistry and the MØD organic chemistry frameworks are amongst the 
most intensely developed applications of rewriting-based methods in the life sciences to 
date. A typical feature of these types of rewriting theories is the necessity to implement 
certain structural constraints on the objects to be rewritten (a protein is empirically found 
to have a certain signature of sites, a carbon atom can form at most four bonds, ...). In 
this paper, we contribute a number of original developments that permit to implement 
a universal theory of continuous-time Markov chains (CTMCs) for stochastic rewriting 
systems. Our core mathematical concepts are a novel rule algebra construction for the 
relevant setting of rewriting rules with conditions, both in Double- and in Sesqui-Pushout 
semantics, augmented by a suitable stochastic mechanics formalism extension that permits 
to derive dynamical evolution equations for pattern-counting statistics. A second main 
contribution of our paper is a novel framework of restricted rewriting theories, which 
comprises a rule-algebra calculus under the restriction to so-called constraint-preserving 
completions of application conditions (for rules considered to act only upon objects of 
the underlying category satisfying a globally fixed set of structural constraints). This novel 
framework in turn renders a faithful encoding of bio- and organo-chemical rewriting 
in the sense of Kappa and MØD possible, which allows us to derive a rewriting-based 
formulation of reaction systems including a full-fledged CTMC semantics as instances of our 
universal CTMC framework. While offering an interesting new perspective and conceptual 
simplification of this semantics in the setting of Kappa, both the formal encoding and the 
CTMC semantics of organo-chemical reaction systems as motivated by the MØD framework 
are the first such results of their kind.

 2021 Elsevier B.V. All rights reserved.

1. Motivation

One of the key applications that rewriting theory may be considered for in the life sciences is the theory of continuous-
time Markov chains (CTMCs) modeling complex systems. In fact, since Delbrück’s seminal work on autocatalytic reaction 
systems in the 1940s [2], the mathematical theory of chemical reaction systems has effectively been formulated as a rewrit-
ing theory in disguise, namely via the rule algebra of discrete graph rewriting [3]. In the present paper, we provide the 

! This is an extended journal version of the ICGT 2020 conference paper [1] (cf. Appendix A for further details).
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Abstract

A foundational theory of compositional categorical rewriting theory is presented, based on a collection of fibration-
like properties that collectively induce and structure intrinsically the large collection of lemmata used in the proofs
of theorems such as concurrency and associativity. The resulting highly generic proofs of these theorems are given;
it is noteworthy that the proof of the concurrency theorem takes only a few lines and, while that of associativity
remains somewhat longer, it would be unreadably long if written directly in terms of the basic lemmata. In addition to
improving, or even enabling, the readability of human-written proofs, we anticipate that this more generic and modular
style of writing proofs should organize and inform the production of formalized proofs in a proof assistant such as
Coq or Isabelle. A curated list of known instances of our framework is used to conclude the paper with a detailed
discussion of the conditions under which the Double Pushout and Sesqui-Pushout semantics of graph transformation
are compositional.
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A foundational theory of compositional categorical rewriting theory is presented, based on a collection of fibration-
like properties that collectively induce and structure intrinsically the large collection of lemmata used in the proofs
of theorems such as concurrency and associativity. The resulting highly generic proofs of these theorems are given;
it is noteworthy that the proof of the concurrency theorem takes only a few lines and, while that of associativity
remains somewhat longer, it would be unreadably long if written directly in terms of the basic lemmata. In addition to
improving, or even enabling, the readability of human-written proofs, we anticipate that this more generic and modular
style of writing proofs should organize and inform the production of formalized proofs in a proof assistant such as
Coq or Isabelle. A curated list of known instances of our framework is used to conclude the paper with a detailed
discussion of the conditions under which the Double Pushout and Sesqui-Pushout semantics of graph transformation
are compositional.
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Explicit rewriting semantics (DPO, SqPO, …)

categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Instantiations of rewriting semantics in theory and applications 
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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organic chemistry

knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Explicit rewriting semantics (DPO, SqPO, …)

categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can

Preprint 5/48

organic chemistry

knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed

i584 P.Boutillier et al.
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Explicit rewriting semantics (DPO, SqPO, …)

categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Explicit rewriting semantics (DPO, SqPO, …)

categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.

57

compositional rewriting  
double categories (crDCs)

O O I I

O0 O0 I0 I0

r

m

r0

m0
S

m
T

m0 ↵

Figure 2: Convention for source and target functors for double categories.
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Figure 3: On the definition of double categories.
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Coq or Isabelle. A curated list of known instances of our framework is used to conclude the paper with a detailed
discussion of the conditions under which the Double Pushout and Sesqui-Pushout semantics of graph transformation
are compositional.

Keywords: elsarticle.cls, LATEX, Elsevier, template
2010 MSC: 16B50, 60J27, 68Q42 (Primary) 60J28, 16B50, 05E99 (Secondary)

Contents

1 Introduction 2
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 DPO vs. SqPO for individual rule applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Compositional rule application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Rule composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Compositionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Fibrational structures relevant to rewriting theories 8
2.1 Grothendieck fibrations and opfibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Multi-opfibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Residual multi-opfibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Examples of fibrational structures relevant for rewriting theory . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Fibrational properties of the domain functors . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Fibrational properties of the codomain functors . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Fibrational properties of the target functors . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 Fibrational properties of the source functors . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

?This is an invited extended journal version of the ICGT 2021 conference paper entitled “Concurrency Theorems for Non-linear Rewriting
Theories” [1, 2].
⇤Corresponding author.
Email addresses: nicolas.behr@irif.fr (Nicolas Behr), russell.harmer@ens-lyon.fr (Russell Harmer), jean.krivine@irif.fr

(Jean Krivine)

Preprint submitted to Journal of Logical and Algebraic Methods in Programming April 18, 2022

ar
X

iv
:2

20
4.

07
17

5v
1 

 [c
s.L

O
]  

14
 A

pr
 2

02
2

Part 1: Motivation 

Part 2: FCRT 

Part 3: CoREACT



PART 1: MOTIVATION What is compositional rewriting theory?

?



Nicolas Behr, DES-ES meeting, Inria Paris, May 30, 2022

life sciences
computer 
science

RULE 
ALGEBRAS

tr
ac

el
et

 t
h
e
o

ry

CTMC theory

(organo-/bio-) chemical 
reaction systems 

pathways

probabilistic Boolean 
network models

rewriting theory

concurrency  
& causality theory

applied category theory ?
simulation algorithms

PART 1: MOTIVATION What is compositional rewriting theory?



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

Double Pushout (DPO) rewriting

O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī
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ō ī

i

m(2) (1)pushout 
complement

pushout

Output Keep Input

match



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

Double Pushout (DPO) rewriting

O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī
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Fig. 4. Rule application in Kappa. First, a match between the pattern on the left hand side of a rule (blue lens) and the mixture (bottom) is identified. The action specified

by the rule is then applied to the matching configuration, resulting in a new configuration according to the rule’s right hand side (red circle). Many matchings may be

possible for any given rule and many different rules may be applicable at any given moment. Rules and matchings are chosen for execution in a way that generates

probabilistically correct sequences of events, following a generalization [3] of the Doob-Gillespie algorithm [5, 6] for stochastic chemical kinetics.

The concept of a match can be extended to expressions (mixtures) E′ and E, by saying that E′ conforms to E, written as E′ ! E, if every
agent in E′ conforms to a distinct agent in E. In particular, anything conforms to an empty expression. Usually, E′ is a reaction mixture,
and E is the pattern on the lhs of a rule. We next formalize the notion of "being conformant” as a satisfaction relation !. Symbols refer to the
corresponding syntactical categories as in the agent Definition 1.1. The specificity ranking of binding states is such that ‘?’ (unknown) subsumes
‘ε’ (free) and ‘−’ (bound), and ‘−’ (bound) subsumes a binding label indicating a specific bond to an agent identified in the expression. Likewise,
the specificity ranking of internal states is such that ‘ε’ (unspecified) subsumes any specified state. In symbols:

ε

binding state: ?

!!!!!!

""""
"" internal state: ε ## ι ∈ V

− ## λ ∈ N,

[5]

where the arrow means "is a superset of" (or, equivalently "is less specific than"): x → y ≡ x ⊇ y. Equality applies between two λs that are
identical in value. Of course, we have ε = ε and ? = ? (question marks). In the following, a fraction denotes an inference from the precondition
(in the numerator) to the postcondition (in the denominator), i.e., A

B means "if A then B".

Definition 1.5 (Conforming, Matching). To establish whether E′ conforms to (matches) E, E′ ! E, apply the following criteria:

(i) site match nλ
′

ι′ ! nλι , if λ′ ⊆ λ and ι′ ⊆ ι

(ii) empty interface σ′ ! ∅

(iii) interface
s′ ! s σ′ ! σ
s′,σ′ ! s,σ

(iv) agent name
σ′ ! σ

N(σ′) ! N(σ)

(v) empty expression E′ ! ε

(vi) expression
a′ ! a E′ ! E
a′, E′ ! a, E

Footline Author PNAS Issue Date Volume Issue Number 5

knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Fig. 4. Rule application in Kappa. First, a match between the pattern on the left hand side of a rule (blue lens) and the mixture (bottom) is identified. The action specified

by the rule is then applied to the matching configuration, resulting in a new configuration according to the rule’s right hand side (red circle). Many matchings may be

possible for any given rule and many different rules may be applicable at any given moment. Rules and matchings are chosen for execution in a way that generates

probabilistically correct sequences of events, following a generalization [3] of the Doob-Gillespie algorithm [5, 6] for stochastic chemical kinetics.

The concept of a match can be extended to expressions (mixtures) E′ and E, by saying that E′ conforms to E, written as E′ ! E, if every
agent in E′ conforms to a distinct agent in E. In particular, anything conforms to an empty expression. Usually, E′ is a reaction mixture,
and E is the pattern on the lhs of a rule. We next formalize the notion of "being conformant” as a satisfaction relation !. Symbols refer to the
corresponding syntactical categories as in the agent Definition 1.1. The specificity ranking of binding states is such that ‘?’ (unknown) subsumes
‘ε’ (free) and ‘−’ (bound), and ‘−’ (bound) subsumes a binding label indicating a specific bond to an agent identified in the expression. Likewise,
the specificity ranking of internal states is such that ‘ε’ (unspecified) subsumes any specified state. In symbols:

ε

binding state: ?

!!!!!!

""""
"" internal state: ε ## ι ∈ V

− ## λ ∈ N,

[5]

where the arrow means "is a superset of" (or, equivalently "is less specific than"): x → y ≡ x ⊇ y. Equality applies between two λs that are
identical in value. Of course, we have ε = ε and ? = ? (question marks). In the following, a fraction denotes an inference from the precondition
(in the numerator) to the postcondition (in the denominator), i.e., A

B means "if A then B".

Definition 1.5 (Conforming, Matching). To establish whether E′ conforms to (matches) E, E′ ! E, apply the following criteria:

(i) site match nλ
′

ι′ ! nλι , if λ′ ⊆ λ and ι′ ⊆ ι

(ii) empty interface σ′ ! ∅

(iii) interface
s′ ! s σ′ ! σ
s′,σ′ ! s,σ

(iv) agent name
σ′ ! σ

N(σ′) ! N(σ)

(v) empty expression E′ ! ε

(vi) expression
a′ ! a E′ ! E
a′, E′ ! a, E
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Fig. 4. Rule application in Kappa. First, a match between the pattern on the left hand side of a rule (blue lens) and the mixture (bottom) is identified. The action specified

by the rule is then applied to the matching configuration, resulting in a new configuration according to the rule’s right hand side (red circle). Many matchings may be

possible for any given rule and many different rules may be applicable at any given moment. Rules and matchings are chosen for execution in a way that generates

probabilistically correct sequences of events, following a generalization [3] of the Doob-Gillespie algorithm [5, 6] for stochastic chemical kinetics.

The concept of a match can be extended to expressions (mixtures) E′ and E, by saying that E′ conforms to E, written as E′ ! E, if every
agent in E′ conforms to a distinct agent in E. In particular, anything conforms to an empty expression. Usually, E′ is a reaction mixture,
and E is the pattern on the lhs of a rule. We next formalize the notion of "being conformant” as a satisfaction relation !. Symbols refer to the
corresponding syntactical categories as in the agent Definition 1.1. The specificity ranking of binding states is such that ‘?’ (unknown) subsumes
‘ε’ (free) and ‘−’ (bound), and ‘−’ (bound) subsumes a binding label indicating a specific bond to an agent identified in the expression. Likewise,
the specificity ranking of internal states is such that ‘ε’ (unspecified) subsumes any specified state. In symbols:

ε

binding state: ?

!!!!!!

""""
"" internal state: ε ## ι ∈ V

− ## λ ∈ N,

[5]

where the arrow means "is a superset of" (or, equivalently "is less specific than"): x → y ≡ x ⊇ y. Equality applies between two λs that are
identical in value. Of course, we have ε = ε and ? = ? (question marks). In the following, a fraction denotes an inference from the precondition
(in the numerator) to the postcondition (in the denominator), i.e., A

B means "if A then B".

Definition 1.5 (Conforming, Matching). To establish whether E′ conforms to (matches) E, E′ ! E, apply the following criteria:

(i) site match nλ
′

ι′ ! nλι , if λ′ ⊆ λ and ι′ ⊆ ι

(ii) empty interface σ′ ! ∅

(iii) interface
s′ ! s σ′ ! σ
s′,σ′ ! s,σ

(iv) agent name
σ′ ! σ

N(σ′) ! N(σ)

(v) empty expression E′ ! ε

(vi) expression
a′ ! a E′ ! E
a′, E′ ! a, E
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Fig. 4. Rule application in Kappa. First, a match between the pattern on the left hand side of a rule (blue lens) and the mixture (bottom) is identified. The action specified

by the rule is then applied to the matching configuration, resulting in a new configuration according to the rule’s right hand side (red circle). Many matchings may be

possible for any given rule and many different rules may be applicable at any given moment. Rules and matchings are chosen for execution in a way that generates

probabilistically correct sequences of events, following a generalization [3] of the Doob-Gillespie algorithm [5, 6] for stochastic chemical kinetics.

The concept of a match can be extended to expressions (mixtures) E′ and E, by saying that E′ conforms to E, written as E′ ! E, if every
agent in E′ conforms to a distinct agent in E. In particular, anything conforms to an empty expression. Usually, E′ is a reaction mixture,
and E is the pattern on the lhs of a rule. We next formalize the notion of "being conformant” as a satisfaction relation !. Symbols refer to the
corresponding syntactical categories as in the agent Definition 1.1. The specificity ranking of binding states is such that ‘?’ (unknown) subsumes
‘ε’ (free) and ‘−’ (bound), and ‘−’ (bound) subsumes a binding label indicating a specific bond to an agent identified in the expression. Likewise,
the specificity ranking of internal states is such that ‘ε’ (unspecified) subsumes any specified state. In symbols:

ε

binding state: ?

!!!!!!

""""
"" internal state: ε ## ι ∈ V

− ## λ ∈ N,

[5]

where the arrow means "is a superset of" (or, equivalently "is less specific than"): x → y ≡ x ⊇ y. Equality applies between two λs that are
identical in value. Of course, we have ε = ε and ? = ? (question marks). In the following, a fraction denotes an inference from the precondition
(in the numerator) to the postcondition (in the denominator), i.e., A

B means "if A then B".

Definition 1.5 (Conforming, Matching). To establish whether E′ conforms to (matches) E, E′ ! E, apply the following criteria:

(i) site match nλ
′

ι′ ! nλι , if λ′ ⊆ λ and ι′ ⊆ ι

(ii) empty interface σ′ ! ∅

(iii) interface
s′ ! s σ′ ! σ
s′,σ′ ! s,σ

(iv) agent name
σ′ ! σ

N(σ′) ! N(σ)

(v) empty expression E′ ! ε

(vi) expression
a′ ! a E′ ! E
a′, E′ ! a, E

Footline Author PNAS Issue Date Volume Issue Number 5
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by the rule is then applied to the matching configuration, resulting in a new configuration according to the rule’s right hand side (red circle). Many matchings may be

possible for any given rule and many different rules may be applicable at any given moment. Rules and matchings are chosen for execution in a way that generates

probabilistically correct sequences of events, following a generalization [3] of the Doob-Gillespie algorithm [5, 6] for stochastic chemical kinetics.

The concept of a match can be extended to expressions (mixtures) E′ and E, by saying that E′ conforms to E, written as E′ ! E, if every
agent in E′ conforms to a distinct agent in E. In particular, anything conforms to an empty expression. Usually, E′ is a reaction mixture,
and E is the pattern on the lhs of a rule. We next formalize the notion of "being conformant” as a satisfaction relation !. Symbols refer to the
corresponding syntactical categories as in the agent Definition 1.1. The specificity ranking of binding states is such that ‘?’ (unknown) subsumes
‘ε’ (free) and ‘−’ (bound), and ‘−’ (bound) subsumes a binding label indicating a specific bond to an agent identified in the expression. Likewise,
the specificity ranking of internal states is such that ‘ε’ (unspecified) subsumes any specified state. In symbols:

ε

binding state: ?

!!!!!!
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"" internal state: ε ## ι ∈ V

− ## λ ∈ N,

[5]

where the arrow means "is a superset of" (or, equivalently "is less specific than"): x → y ≡ x ⊇ y. Equality applies between two λs that are
identical in value. Of course, we have ε = ε and ? = ? (question marks). In the following, a fraction denotes an inference from the precondition
(in the numerator) to the postcondition (in the denominator), i.e., A

B means "if A then B".

Definition 1.5 (Conforming, Matching). To establish whether E′ conforms to (matches) E, E′ ! E, apply the following criteria:

(i) site match nλ
′

ι′ ! nλι , if λ′ ⊆ λ and ι′ ⊆ ι

(ii) empty interface σ′ ! ∅

(iii) interface
s′ ! s σ′ ! σ
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(iv) agent name
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(v) empty expression E′ ! ε

(vi) expression
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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KEY CONCEPT: 

Rule algebra formalism
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 a new fundamental tool in rewriting theory, combinatorics  
     and concurrency theory

⇒

The rule algebra               is an associative unital algebra, 
 with unit element                 .

(R, ⇤R)

�(? ( ?)

LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020Theorem

�(r2) ⇤R �(r1) :=

X

µ2Mr2
(r1)

�
⇣

r2

µ
J r1

⌘
Definition:  the rule algebra product                                    is defined via

“sum over ways to compose the rules”

⇤R : R⇥R ! R

Physics insight: the rule algebra formalism
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Mathematics of chemical reactions

Example: 2X
↵

(�� X (↵ 2 R>0)

x̂(x
n
) := x

n+1
, @x(x

n
) :=

(
0 if n = 0

n · xn�1 if n > 0
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Mathematics of chemical reactions

Example: 2X
↵
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12 pn(t) := Pr(#X = n at time t) = ?

Max Delbrück (1906-1981) 
1969 Nobel Prize laureate 
(medicine and physiology)

P(t; x) :=
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Example:                                        (here: configuration = iso-class of graph)   |ni := |• ... •i
n vertices

  analogous concept for rewriting theory: ⇒
                              — basis vector (of a vector space of configurations     , 

                                                          e.g. graphs, trees, molecules, ….)  
Ĉ|Xi

Rule algebra framework (Part II)
Observation:        — basis vector (of the vector space of polynomials in x)x

n

Key step:  from rules to linear operators on                       Ĉ

O I

rm(X) X

r

m⇢
�
�(r)

�
|Xi :=

X

m2Mr(X)

|rm(X)i

“sum over all ways to apply r to X” 
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Ĉ
�

(R, ⇤R)

⇢
�
�(r2)

�
⇢
�
�(r1)

�
|Xi = ⇢

�
�(r2) ⇤R �(r1)

�
|Xi

LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020Theorem

Rule algebra framework (Part II)



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

n vertices
|ni := |• ... •i $ xn

⇢
�
�(• ( ?)

�
|ni = |n + 1i $ x̂

�
xn
�

= xn+1

⇢
�
�(? ( •)

�
|ni =

(
0 if n = 0

n · |n � 1i if n > 0
$ @x

�
xn
�

=

(
0 if n = 0

n · xn�1 if n > 0

↵
�
⇢
�
�(• • ( •)

�
� ⇢

�
�(• ( •)

��
$ ↵

�
x̂2@x � x̂@x

�

Example:                                |ni := |• ... •i $ xn

⇢
�
�(• ( ?)

�
|ni = |n + 1i $ x̂

�
xn
�

= xn+1

⇢
�
�(? ( •)

�
|ni =

(
0 if n = 0

n · |n � 1i if n > 0
$ @x

�
xn
�

=

(
0 if n = 0

n · xn�1 if n > 0

↵
�
⇢
�
�(• • ( •)

�
� ⇢

�
�(• ( •)

��
$ ↵

�
x̂2@x � x̂@x

�

 Delbrück’s evolution operator explained via rewriting theory! ⇒

Application to the case of the reaction 2X
↵

(�� X (↵ 2 R>0)

⇢
�
�(r)

�
|Xi :=

X

m2Mr(X)

|rm(X)i

Theorem                            

                          is a representation of the rule algebra              , i.e.⇢ : R ! End
�
Ĉ
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The Kappa biochemistry and the MØD organic chemistry frameworks are amongst the 
most intensely developed applications of rewriting-based methods in the life sciences to 
date. A typical feature of these types of rewriting theories is the necessity to implement 
certain structural constraints on the objects to be rewritten (a protein is empirically found 
to have a certain signature of sites, a carbon atom can form at most four bonds, ...). In 
this paper, we contribute a number of original developments that permit to implement 
a universal theory of continuous-time Markov chains (CTMCs) for stochastic rewriting 
systems. Our core mathematical concepts are a novel rule algebra construction for the 
relevant setting of rewriting rules with conditions, both in Double- and in Sesqui-Pushout 
semantics, augmented by a suitable stochastic mechanics formalism extension that permits 
to derive dynamical evolution equations for pattern-counting statistics. A second main 
contribution of our paper is a novel framework of restricted rewriting theories, which 
comprises a rule-algebra calculus under the restriction to so-called constraint-preserving 
completions of application conditions (for rules considered to act only upon objects of 
the underlying category satisfying a globally fixed set of structural constraints). This novel 
framework in turn renders a faithful encoding of bio- and organo-chemical rewriting 
in the sense of Kappa and MØD possible, which allows us to derive a rewriting-based 
formulation of reaction systems including a full-fledged CTMC semantics as instances of our 
universal CTMC framework. While offering an interesting new perspective and conceptual 
simplification of this semantics in the setting of Kappa, both the formal encoding and the 
CTMC semantics of organo-chemical reaction systems as motivated by the MØD framework 
are the first such results of their kind.
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1. Motivation

One of the key applications that rewriting theory may be considered for in the life sciences is the theory of continuous-
time Markov chains (CTMCs) modeling complex systems. In fact, since Delbrück’s seminal work on autocatalytic reaction 
systems in the 1940s [2], the mathematical theory of chemical reaction systems has effectively been formulated as a rewrit-
ing theory in disguise, namely via the rule algebra of discrete graph rewriting [3]. In the present paper, we provide the 
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Adaptive networks model social, physical, technical, or biological systems as attributed graphs evolv-
ing at the level of both their topology and data. They are naturally described by graph rewriting, but
the majority of authors take an approach inspired by the physical sciences, combining an informal
description of the operations with programmed simulations, and systems of ODEs as the only ab-
stract mathematical description. We show that we can capture a range of social network models,
the so-called voter models, as stochastic attributed graph rewrite systems, demonstrate the benefits
of this representation and establish its relation to the non-standard probabilistic view adopted in the
literature. We use the theory and tools of graph rewriting to analyze and simulate the models and
propose a new variant of a standard stochastic simulation algorithm to recreate the results observed.

1 Introduction

Modeling and analyzing the dynamics of social networks allows scientists to understand the impact of so-
cial interactions on areas as diverse as politics (opinion formation, spread of (dis)information), economic
development, and health (spread of diseases, update of vaccines) [22, 1, 9]. Much of the more founda-
tional literature approach social network analysis from a perspective informed by statistical physics [21]
using a combination of mathematical models (differential equations) and programmed simulation, both
derived from an intuitive understanding of the operation of the network. This works well for static net-
works, where the structure is fixed and changes are to node or link attributes only, but in complex adaptive
networks [15] the interconnectedness of structure and data evolution poses additional challenges.

Stochastic typed attributed graph rewriting [16] is an obvious choice to formalize and analyze com-
plex adaptive networks. The formalism provides both tool support for simulation and analysis and an
established theory to derive mathematical models from the same rule-based descriptions, thus replacing
the informal, and sometimes vague, descriptions in natural language. A case in point are the various
voter models [11, 25, 17] which describe opinion formation in a network of agents. The operations, as
described in [11] seem clear enough.

. . . we consider two opinions (called 0 and 1) . . . ; and on each step, we pick a discordant
edge (x,y) at random . . . . With probability 1�a , the voter at x adopts the opinion of the
voter at y. Otherwise (i.e., with probability a), x breaks its connection to y and makes a
new connection to a voter chosen at random from those that share its opinion. The process
continues until there are no edges connecting voters that disagree.

Intuitively, this is a graph rewrite system of four rules over undirected graphs whose nodes are at-
tributed by 0 or 1, shown below using � and •, respectively. We adopt the right-to-left notation of rules
in line with the theory of rule algebras [8, 2, 7, 6].

*Corresponding author email address: rh122@leicester.ac.uk

8 Stochastic Graph Rewriting For Social Network Modeling

·

��

•�� •�• ( •�• do nothing ��� ( ���

•�� •��

• �\• ( •��
•

• �
/� ( •��

� •�• ( •�� ��� ( •��

rewire to • rewire to � adopt • adopt �

NE
NE

N•�•
NE

N���
NE

1
2=

1
2 ·

(N•�1)
(N•�1)

1
2=

1
2 ·

(N��1)
(N��1)

pick an edgea
2NE

·N•��(N•�1)
(N•�1)

a
2NE

· N•��(N��1)
(N��1)

N•�•
NE

N���
NE

N•��
NE

a (1�a)

1
2

1
2

(1�a)
2NE

N•��

(1�a)
2NE

N•��

Figure 3: Specification of the adaptive voter model (AVM) according to [11] via a probabilistic decision
tree (black arrows), and as combined one-step probabilistic transitions (orange arrows).

By construction, HLCM does not contain any operator-valued inverse weights (in contrast to the original
HW ). Moreover, for certain choices of (inverse) weight functions W1, . . . ,WN , the LCM-construction
results in an infinitesimal generator HLCM in which all contributing rules have the same input motif I,
thus making contact with the methodology of [19].

3.3 Rule-based DTMCs

Despite their numerous applications in many different research fields, to date discrete-time Markov
chains (DTMCs) that are based upon notions of probabilistic rewriting systems have not been consid-
ered in quite a comparable detail as the CTMC constructions. Following [3], we present here a possible
general construction of rule-based DTMC via a rule-algebraic approach:

Definition 5. For a suitable category C, let T = {(g j,R j,Wj)}N
j=1 be a (finite) set of triples of positive

coefficients g j 2 R>0, rewriting rules R j 2 Lin(C) and (inverse) weight functions Wj 2 End(Ĉ)diag ( j =
1, . . . ,N), with the additional constraint that

N

Â
j=1

g jÔ(d (R j)) ·
1

W ⇤
j
= IdEnd(Ĉ) . (13)

Then together with an initial state |F0i 2Prob(Ĉ), this data defines a SqPO-type rule-based discrete-time
Markov chain (DTMC), whose n-th state (for non-negative integer values of n) is given by

|Fni := Dn |F0i , D :=
N

Â
j=1

g jr(d (R j)) ·
1

W ⇤
j

(r ⌘ rC) . (14)

Example 3 (Adaptive Voter Model). As a typical example of a social network model, consider the
specification of the adaptive voter model (AVM) in the variant according to Durrett et al. [ref], which
has as its input parameters an initial graph state |F0i= |X0i (with N(0)

• and N(0)
� vertices of types • and

�, respectively, and with NE undirected edges) and a probability 0  a  1, and whose transitions as
depicted in Figure 3 are given via a form of a probabilistic decision procedure in several steps (black
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same input motif (and thus as a model in the spirit of the “Potsdam approach” as in [19]):
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• �
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4 Simulating the Models

In Section 3.3 we presented several ways of converting a DTMC-based model into a CTMC-based one.
The first (M1) is based on introducing weight factors correcting for the deviation of the probabilistic
view of the DTMC from the CTMC mass action semantics. This allows us to use a modified stochastic
simulation algorithm to recover the behavior of the DTMC. Then we have the mass action stochastic
graph transformation system (M2) as introduced in Section 2, in our view the most natural and closest
to reality due to its use of continuous time, but in order to relate to the original probabilistic formulation
we have to sample rate constants experimentally until the behavior matches that observed in the given
model. Finally we consider a model (M3) obtained by mutually extending the rules of the system to the
same left-hand side. Then all rules have the same number of matches and hence rates directly reflect
probabilities.

In this section we simulate these models with the CTMC-based SimSG tool [12] to see how, with
suitably chosen parameters, their behavior matches that of the original formulation [11]. In particular,
we want to answer the following questions.

RQ1: Can we reproduce the results of [11] by simulating (M1) in SimSG?

RQ2: What rates do we have to use to reproduce the behavior of [11] in (M2)?

RQ3: Does (M3) with rates reflecting the probabilities of [11] lead to the same overall behavior?

Note that in (M1) and (M2) rates are derived analytically based on the theory in Section 3.3 while they are
determined experimentally for (M3). As in [11] initial graphs are generated randomly based on a fraction

(a) Initial graph (u=0.5) (b) Giant component (c) Fragmented graph

Figure 4: Graphs before and after simulation



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

set of rules and input state (distribution)

JID:TCS AID:13039 /FLA Doctopic: Logic, semantics and theory of programming [m3G; v1.307] P.1 (1-48)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Rewriting theory for the life sciences: A unifying theory of 

CTMC semantics !

Nicolas Behr a,∗, Jean Krivine a, Jakob L. Andersen b, Daniel Merkle b

a Institut de Recherche en Informatique Fondamentale, Universite de Paris, CNRS UMR 8243, 8 Place Aurelie Nemours, Paris Cedex 13, 75205, 
France
b Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense M, 5230, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 January 2021
Received in revised form 4 June 2021
Accepted 19 July 2021
Available online xxxx

Keywords:
Double-pushout rewriting
Sesqui-pushout rewriting
Rule algebra theory
Stochastic mechanics
Biochemistry
Organic chemistry
Algorithmic cheminformatics

The Kappa biochemistry and the MØD organic chemistry frameworks are amongst the 
most intensely developed applications of rewriting-based methods in the life sciences to 
date. A typical feature of these types of rewriting theories is the necessity to implement 
certain structural constraints on the objects to be rewritten (a protein is empirically found 
to have a certain signature of sites, a carbon atom can form at most four bonds, ...). In 
this paper, we contribute a number of original developments that permit to implement 
a universal theory of continuous-time Markov chains (CTMCs) for stochastic rewriting 
systems. Our core mathematical concepts are a novel rule algebra construction for the 
relevant setting of rewriting rules with conditions, both in Double- and in Sesqui-Pushout 
semantics, augmented by a suitable stochastic mechanics formalism extension that permits 
to derive dynamical evolution equations for pattern-counting statistics. A second main 
contribution of our paper is a novel framework of restricted rewriting theories, which 
comprises a rule-algebra calculus under the restriction to so-called constraint-preserving 
completions of application conditions (for rules considered to act only upon objects of 
the underlying category satisfying a globally fixed set of structural constraints). This novel 
framework in turn renders a faithful encoding of bio- and organo-chemical rewriting 
in the sense of Kappa and MØD possible, which allows us to derive a rewriting-based 
formulation of reaction systems including a full-fledged CTMC semantics as instances of our 
universal CTMC framework. While offering an interesting new perspective and conceptual 
simplification of this semantics in the setting of Kappa, both the formal encoding and the 
CTMC semantics of organo-chemical reaction systems as motivated by the MØD framework 
are the first such results of their kind.

 2021 Elsevier B.V. All rights reserved.

1. Motivation

One of the key applications that rewriting theory may be considered for in the life sciences is the theory of continuous-
time Markov chains (CTMCs) modeling complex systems. In fact, since Delbrück’s seminal work on autocatalytic reaction 
systems in the 1940s [2], the mathematical theory of chemical reaction systems has effectively been formulated as a rewrit-
ing theory in disguise, namely via the rule algebra of discrete graph rewriting [3]. In the present paper, we provide the 

! This is an extended journal version of the ICGT 2020 conference paper [1] (cf. Appendix A for further details).

* Corresponding author.
E-mail addresses: nicolas.behr@irif.fr (N. Behr), jean.krivine@irif.fr (J. Krivine), jlandersen@imada.sdu.dk (J.L. Andersen), daniel@imada.sdu.dk (D. Merkle).

https://doi.org/10.1016/j.tcs.2021.07.026
0304-3975/ 2021 Elsevier B.V. All rights reserved.

continuous-time Markov chains

Submitted to:
TERMGRAPH 2020

© N. Behr
This work is licensed under the
Creative Commons Attribution License.

On Stochastic Rewriting and Combinatorics

via Rule-Algebraic Methods*

Nicolas Behr
Université de Paris, CNRS, IRIF

F-75006, Paris, France
nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.
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Adaptive networks model social, physical, technical, or biological systems as attributed graphs evolv-
ing at the level of both their topology and data. They are naturally described by graph rewriting, but
the majority of authors take an approach inspired by the physical sciences, combining an informal
description of the operations with programmed simulations, and systems of ODEs as the only ab-
stract mathematical description. We show that we can capture a range of social network models,
the so-called voter models, as stochastic attributed graph rewrite systems, demonstrate the benefits
of this representation and establish its relation to the non-standard probabilistic view adopted in the
literature. We use the theory and tools of graph rewriting to analyze and simulate the models and
propose a new variant of a standard stochastic simulation algorithm to recreate the results observed.

1 Introduction

Modeling and analyzing the dynamics of social networks allows scientists to understand the impact of so-
cial interactions on areas as diverse as politics (opinion formation, spread of (dis)information), economic
development, and health (spread of diseases, update of vaccines) [22, 1, 9]. Much of the more founda-
tional literature approach social network analysis from a perspective informed by statistical physics [21]
using a combination of mathematical models (differential equations) and programmed simulation, both
derived from an intuitive understanding of the operation of the network. This works well for static net-
works, where the structure is fixed and changes are to node or link attributes only, but in complex adaptive
networks [15] the interconnectedness of structure and data evolution poses additional challenges.

Stochastic typed attributed graph rewriting [16] is an obvious choice to formalize and analyze com-
plex adaptive networks. The formalism provides both tool support for simulation and analysis and an
established theory to derive mathematical models from the same rule-based descriptions, thus replacing
the informal, and sometimes vague, descriptions in natural language. A case in point are the various
voter models [11, 25, 17] which describe opinion formation in a network of agents. The operations, as
described in [11] seem clear enough.

. . . we consider two opinions (called 0 and 1) . . . ; and on each step, we pick a discordant
edge (x,y) at random . . . . With probability 1�a , the voter at x adopts the opinion of the
voter at y. Otherwise (i.e., with probability a), x breaks its connection to y and makes a
new connection to a voter chosen at random from those that share its opinion. The process
continues until there are no edges connecting voters that disagree.

Intuitively, this is a graph rewrite system of four rules over undirected graphs whose nodes are at-
tributed by 0 or 1, shown below using � and •, respectively. We adopt the right-to-left notation of rules
in line with the theory of rule algebras [8, 2, 7, 6].

*Corresponding author email address: rh122@leicester.ac.uk
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Figure 3: Specification of the adaptive voter model (AVM) according to [11] via a probabilistic decision
tree (black arrows), and as combined one-step probabilistic transitions (orange arrows).

By construction, HLCM does not contain any operator-valued inverse weights (in contrast to the original
HW ). Moreover, for certain choices of (inverse) weight functions W1, . . . ,WN , the LCM-construction
results in an infinitesimal generator HLCM in which all contributing rules have the same input motif I,
thus making contact with the methodology of [19].

3.3 Rule-based DTMCs

Despite their numerous applications in many different research fields, to date discrete-time Markov
chains (DTMCs) that are based upon notions of probabilistic rewriting systems have not been consid-
ered in quite a comparable detail as the CTMC constructions. Following [3], we present here a possible
general construction of rule-based DTMC via a rule-algebraic approach:

Definition 5. For a suitable category C, let T = {(g j,R j,Wj)}N
j=1 be a (finite) set of triples of positive

coefficients g j 2 R>0, rewriting rules R j 2 Lin(C) and (inverse) weight functions Wj 2 End(Ĉ)diag ( j =
1, . . . ,N), with the additional constraint that

N

Â
j=1

g jÔ(d (R j)) ·
1

W ⇤
j
= IdEnd(Ĉ) . (13)

Then together with an initial state |F0i 2Prob(Ĉ), this data defines a SqPO-type rule-based discrete-time
Markov chain (DTMC), whose n-th state (for non-negative integer values of n) is given by

|Fni := Dn |F0i , D :=
N

Â
j=1

g jr(d (R j)) ·
1

W ⇤
j

(r ⌘ rC) . (14)

Example 3 (Adaptive Voter Model). As a typical example of a social network model, consider the
specification of the adaptive voter model (AVM) in the variant according to Durrett et al. [ref], which
has as its input parameters an initial graph state |F0i= |X0i (with N(0)

• and N(0)
� vertices of types • and

�, respectively, and with NE undirected edges) and a probability 0  a  1, and whose transitions as
depicted in Figure 3 are given via a form of a probabilistic decision procedure in several steps (black
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same input motif (and thus as a model in the spirit of the “Potsdam approach” as in [19]):

HLCM =
a

2NE
r
✓

d
✓
• �|• � (

•��
• �

◆◆
+

a
2NE

r
✓

d
✓
• �|• � (

•��
• �

◆◆
(21a)

+
1�a
2NE

r
✓

d
✓
•�•
• � (

•��
• �

◆◆
+

1�a
2NE

r
✓

d
✓
���
• � (

•��
• �

◆◆
(21b)

� 1
NE

Ô•��
• �

(21c)

4 Simulating the Models

In Section 3.3 we presented several ways of converting a DTMC-based model into a CTMC-based one.
The first (M1) is based on introducing weight factors correcting for the deviation of the probabilistic
view of the DTMC from the CTMC mass action semantics. This allows us to use a modified stochastic
simulation algorithm to recover the behavior of the DTMC. Then we have the mass action stochastic
graph transformation system (M2) as introduced in Section 2, in our view the most natural and closest
to reality due to its use of continuous time, but in order to relate to the original probabilistic formulation
we have to sample rate constants experimentally until the behavior matches that observed in the given
model. Finally we consider a model (M3) obtained by mutually extending the rules of the system to the
same left-hand side. Then all rules have the same number of matches and hence rates directly reflect
probabilities.

In this section we simulate these models with the CTMC-based SimSG tool [12] to see how, with
suitably chosen parameters, their behavior matches that of the original formulation [11]. In particular,
we want to answer the following questions.

RQ1: Can we reproduce the results of [11] by simulating (M1) in SimSG?

RQ2: What rates do we have to use to reproduce the behavior of [11] in (M2)?

RQ3: Does (M3) with rates reflecting the probabilities of [11] lead to the same overall behavior?

Note that in (M1) and (M2) rates are derived analytically based on the theory in Section 3.3 while they are
determined experimentally for (M3). As in [11] initial graphs are generated randomly based on a fraction

(a) Initial graph (u=0.5) (b) Giant component (c) Fragmented graph

Figure 4: Graphs before and after simulation
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Welcome to Kappa

Kappa is a rule-based language for modeling systems of interacting agents. While its current development is primarily motivated by
molecular systems biology, its range of applications is quite broad.

What does rule-based mean?
Rule-based modeling languages for molecular biology, such as Kappa
and BNGL, or organic chemistry, such as Mød, can be used to write
mechanistic models of complex reaction systems.

Consider a patch of the world that acts as a unit of interaction. Such a
patch could be a single agent or a combination of agents. In systems
biology applications, an agent would be a protein and a combination of
agents would be a complex of non-covalently bound proteins; in
chemistry, an agent would be an atom and a combination of agents
would be a molecule.

Imagine further that the context relevant to the interaction (green in the
Figure) is smaller than the patch itself (brown). This splits the patch into
regions: a context that is irrelevant to the action, one that is required for
the action (also known as the pre-condition), a further context that is
altered by the action (the post-condition), and the part of the required
context that remains invariant.

It then makes sense to separate the action and its necessary conditions
from the event that results if the action were to occur in the broader
context that is the patch. This separation gives rise to the concept of a
rule. The green context on the left of a rule only specifies those aspects
of a patch that are necessary for interaction.

A rule might therefore apply to many patches, and a patch might be
acted upon by many rules. The spirit of this approach is analogous to
organic chemistry, which makes a distinction between a rule specifying
the transformation of molecular parts and the reaction induced by it in
the context of a complete molecular arrangement.

Since Kappa entities are graphical structures, rules are graph-rewrite
directives. In a dynamical setting where rules cause state transitions in a
population of patches, rules fire stochastically based on their activity as determined by standard continuous-time Monte Carlo (as in
stochastic chemical kinetics).

By separating a rule from a patch on which it acts we gain a much clearer approach to mechanistic causality. If causal analysis were to
proceed at the level of patches, it would obfuscate the causal structure of a system by dragging along context irrelevant to an event. In
addition to simulation and static analysis, the Kappa platform also extracts the causal structure of a rule system from its simulation traces.

Is this different from agent-based modeling?
The term "agent-based" is often used informally to refer to a modeling style in which discrete units of interaction (the agents) are defined ad
hoc, without a systematic internal structure. In such a setting, the complex of a kinase and a substrate would be considered an agent. This
is not the setting Kappa is meant for (although it could be used that way). Rather, in Kappa, an agent is an atomic entity with a minimal
signature (a set of resources for interaction) and a complex explicitly reveals—by a graphical representation—its composition and
connectivity in terms of atoms. Because of this structure, the patterns that appear in rules select the configurations to which they apply
through graph matching. To avoid confusion with the informal meaning of "agent-based", we refer to Kappa as a "rule-based" modeling
approach.

Kappa is an ongoing open-source development supported by several partners and involving researchers from several institutions. Most
standalone Kappa tools are software agents (web services) that communicate through REST protocols. You can use them individually and
interactively, locally on your computer or remotely through the internet; you can script over them (there is a Python wrapper), or you can use
a browser-based User Interface as well as a standalone app that integrates them.

!! "

18/06/2020 23:33
Page 1 of 1

knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Figure 14. Illustration of a pathway similar to the one depicted in Fig. 2a of [44],
using fewer reactions. This solution category is the framed blue cell of Tab. 3. The
highlighted sub-pathway is the pathway from Tab. 4a.
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MedØlDatschgerl
MedØlDatschgerl (MØD) is a so!ware package developed for graph-based cheminformatics. It includes a general graph transformation system for automatically
generating reaction networks from graph grammar formulations of chemistries.

The so!ware is primarily implemented in C++, but the package includes comprehensive Python bindings that provide easy access to most functionality. The package also
includes a large visualisation module that makes it possible to automatically visualise molecules, reactions, and reaction networks. Examples of how to use the Python
interface and the visualisation capabilities can be seen in the examples section of the documentation. The examples can be explored interactively in the live playground
below.

Each release is available at GitHub. Please also use GitHub for reporting bugs, suggesting features, and contributing code. The documentation can be found at the GitHub
Page.

Live Playground
We provide limited access to a server with a MØD installation, for illustrating the examples. When it is online an editor and a read-only terminal will appear in the frame
below. The Python snippets from the examples section can be loaded into the editor and edited at will.

To run the code in the editor, press the Run button. You can abort your run with the Kill button. A!er a successful run, a summary link will appear where you can access a
PDF with the figures you have printed. During the run the terminal on the right will show the exact output of running your script, meaning any print calls will show up
there.

Note  If the frame below is empty the playground server is temporarily o"line.
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If you use MØD in your research, you may want to cite some of the following papers. You may also be interested in the Graph Grammar Library, which has been used in
early versions of MØD.
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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Welcome to Kappa

Kappa is a rule-based language for modeling systems of interacting agents. While its current development is primarily motivated by
molecular systems biology, its range of applications is quite broad.

What does rule-based mean?
Rule-based modeling languages for molecular biology, such as Kappa
and BNGL, or organic chemistry, such as Mød, can be used to write
mechanistic models of complex reaction systems.

Consider a patch of the world that acts as a unit of interaction. Such a
patch could be a single agent or a combination of agents. In systems
biology applications, an agent would be a protein and a combination of
agents would be a complex of non-covalently bound proteins; in
chemistry, an agent would be an atom and a combination of agents
would be a molecule.

Imagine further that the context relevant to the interaction (green in the
Figure) is smaller than the patch itself (brown). This splits the patch into
regions: a context that is irrelevant to the action, one that is required for
the action (also known as the pre-condition), a further context that is
altered by the action (the post-condition), and the part of the required
context that remains invariant.

It then makes sense to separate the action and its necessary conditions
from the event that results if the action were to occur in the broader
context that is the patch. This separation gives rise to the concept of a
rule. The green context on the left of a rule only specifies those aspects
of a patch that are necessary for interaction.

A rule might therefore apply to many patches, and a patch might be
acted upon by many rules. The spirit of this approach is analogous to
organic chemistry, which makes a distinction between a rule specifying
the transformation of molecular parts and the reaction induced by it in
the context of a complete molecular arrangement.

Since Kappa entities are graphical structures, rules are graph-rewrite
directives. In a dynamical setting where rules cause state transitions in a
population of patches, rules fire stochastically based on their activity as determined by standard continuous-time Monte Carlo (as in
stochastic chemical kinetics).

By separating a rule from a patch on which it acts we gain a much clearer approach to mechanistic causality. If causal analysis were to
proceed at the level of patches, it would obfuscate the causal structure of a system by dragging along context irrelevant to an event. In
addition to simulation and static analysis, the Kappa platform also extracts the causal structure of a rule system from its simulation traces.

Is this different from agent-based modeling?
The term "agent-based" is often used informally to refer to a modeling style in which discrete units of interaction (the agents) are defined ad
hoc, without a systematic internal structure. In such a setting, the complex of a kinase and a substrate would be considered an agent. This
is not the setting Kappa is meant for (although it could be used that way). Rather, in Kappa, an agent is an atomic entity with a minimal
signature (a set of resources for interaction) and a complex explicitly reveals—by a graphical representation—its composition and
connectivity in terms of atoms. Because of this structure, the patterns that appear in rules select the configurations to which they apply
through graph matching. To avoid confusion with the informal meaning of "agent-based", we refer to Kappa as a "rule-based" modeling
approach.

Kappa is an ongoing open-source development supported by several partners and involving researchers from several institutions. Most
standalone Kappa tools are software agents (web services) that communicate through REST protocols. You can use them individually and
interactively, locally on your computer or remotely through the internet; you can script over them (there is a Python wrapper), or you can use
a browser-based User Interface as well as a standalone app that integrates them.

!! "

18/06/2020 23:33
Page 1 of 1

knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Figure 14. Illustration of a pathway similar to the one depicted in Fig. 2a of [44],
using fewer reactions. This solution category is the framed blue cell of Tab. 3. The
highlighted sub-pathway is the pathway from Tab. 4a.
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MedØlDatschgerl
MedØlDatschgerl (MØD) is a so!ware package developed for graph-based cheminformatics. It includes a general graph transformation system for automatically
generating reaction networks from graph grammar formulations of chemistries.

The so!ware is primarily implemented in C++, but the package includes comprehensive Python bindings that provide easy access to most functionality. The package also
includes a large visualisation module that makes it possible to automatically visualise molecules, reactions, and reaction networks. Examples of how to use the Python
interface and the visualisation capabilities can be seen in the examples section of the documentation. The examples can be explored interactively in the live playground
below.

Each release is available at GitHub. Please also use GitHub for reporting bugs, suggesting features, and contributing code. The documentation can be found at the GitHub
Page.

Live Playground
We provide limited access to a server with a MØD installation, for illustrating the examples. When it is online an editor and a read-only terminal will appear in the frame
below. The Python snippets from the examples section can be loaded into the editor and edited at will.

To run the code in the editor, press the Run button. You can abort your run with the Kill button. A!er a successful run, a summary link will appear where you can access a
PDF with the figures you have printed. During the run the terminal on the right will show the exact output of running your script, meaning any print calls will show up
there.

Note  If the frame below is empty the playground server is temporarily o"line.

References
If you use MØD in your research, you may want to cite some of the following papers. You may also be interested in the Graph Grammar Library, which has been used in
early versions of MØD.
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
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r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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ABSTRACT

We extend the notion of compositional associative rewriting as recently studied in the rule algebra
framework literature to the setting of rewriting rules with conditions. Our methodology is category-
theoretical in nature, where the definition of rule composition operations encodes the non-deterministic
sequential concurrent application of rules in Double-Pushout (DPO) and Sesqui-Pushout (SqPO)
rewriting with application conditions based upon M-adhesive categories. We uncover an intricate
interplay between the category-theoretical concepts of conditions on rules and morphisms, the
compositionality and compatibility of certain shift and transport constructions for conditions, and
thirdly the property of associativity of the composition of rules.
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On Stochastic Rewriting and Combinatorics

via Rule-Algebraic Methods*

Nicolas Behr
Université de Paris, CNRS, IRIF

F-75006, Paris, France
nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.
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COMBINATORIAL CONVERSION AND MOMENT BISIMULATION
FOR STOCHASTIC REWRITING SYSTEMS

NICOLAS BEHR a, VINCENT DANOS b, AND ILIAS GARNIER b
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Abstract. We develop a novel method to analyze the dynamics of stochastic rewriting
systems evolving over finitary adhesive, extensive categories. Our formalism is based on the
so-called rule algebra framework [4, 7] and exhibits an intimate relationship between the
combinatorics of the rewriting rules (as encoded in the rule algebra) and the dynamics which
these rules generate on observables (as encoded in the stochastic mechanics formalism).
We introduce the concept of combinatorial conversion, whereby under certain technical
conditions the evolution equation for (the exponential generating function of) the statistical
moments of observables can be expressed as the action of certain di↵erential operators on
formal power series. This permits us to formulate the novel concept of moment-bisimulation,
whereby two dynamical systems are compared in terms of their evolution of sets of ob-
servables that are in bijection. In particular, we exhibit non-trivial examples of graphical
rewriting systems that are moment-bisimilar to certain discrete rewriting systems (such
as branching processes or the larger class of stochastic chemical reaction systems). Our
results point towards applications of a vast number of existing well-established exact and
approximate analysis techniques developed for chemical reaction systems to the far richer
class of general stochastic rewriting systems.

1. Introduction

Stochastic graph rewriting systems (SGRSs) have proved their adequacy at modeling various
phenomena [57, 47, 34], ranging from protein-protein interactions in biology [27, 21] to
social network dynamics [43, 62]. In this regard, SGRSs provide a promising setting for
the development of theoretical and algorithmic tools for analyzing the properties of a wide
range of models. These properties correspond to observables, i.e. functions that describe
the time-dependent occurrences of patterns of interest in the system being studied. The
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Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30 ] = 0 , [ÔP3, R̂P30 ] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)
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closure. Due to the complexity of the computations, we present here only the final results:
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�
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(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)
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eadeÔE+gÔP1 (Ĝ)
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ew·Ôel Ĝ | |i (57b)

= e2e+g h|
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eadnÔP3
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eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)
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Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30 ] = 0 , [ÔP3, R̂P30 ] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)
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Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that
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Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30 ] = 0 , [ÔP3, R̂P30 ] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)
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⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L
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�
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�
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Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2
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e n̂n
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⇤

Remark 9. The proof of the associativity theorem in our novel fibrational formulation of compositional rewriting
double categories is a strong indication that modularizing the categorical structures in this form enables vastly com-
plex mathematical developments feasible, and at the same time provides some deep structural insights. Most im-
portantly, our characterization of a given categorical rewriting semantics to qualify as being compositional is based
exclusively on verifying properties of just the direct derivations (and on the existence of multi-sums), i.e., only on the
very definition of the rewriting semantics itself. The above derivation demonstrates that our notion of compositional
rewriting double categories (crDCs) guarantees the existence of both a concurrency theorem and an associativity the-
orem, which is why we are led to conjecture that indeed crDCs might provide an e�cient approach also for verifying
compositionality of rewriting semantics beyond the eight di↵erent semantics for which we instantiate crDCs in the
present paper (cf. Section 4.4).

4. Examples of classes of compositional rewriting theories

This section is structured into three main parts: in Sections 4.1 and 4.2, we will present classes of categories
that admit compositional rewriting theories (i.e., various notions of categories with adhesivity properties, and quasi-
topoi, respectively); in Section 4.3, we will demonstrate that these categories admit the requisite constructions of
compositional rewriting double categories; we will then demonstrate in Section 4.4 a variety of rewriting semantics
and illustrations thereof based upon our general framework of compositional rewriting theories.

4.1. Categories with adhesivity properties
Starting in the early 2000s, the seminal work of Lack and Sobocinski [4, 5, 7] introducing adhesive and quasi-

adhesive categories, which was later generalized by Ehrig et al.[40, 3, 38] to adhesive HLR and weak adhesive HLR
categories and their variants, constituted a significant breakthrough in formalizing and standardizing the theory of
Double-Pushout (DPO) rewriting. In this section, we will quote the salient definitions as well as key results from this
research, with the purpose of providing a curated list of categories of practical interest that carry one of the variants of
adhesivity properties mentioned above. We refer the interested readers to [3, 38] (cf. also [29]) for further background
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Instantiations of rewriting semantics in theory and applications 
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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directed simple graphs was recently found [44] to provide a non-trivial example (cf. the discussion in Example 2 for
further details).

Acknowledgements The authors would like to thank Richard Garner for insightful comments and suggestions related
to the original conference version of this paper [1], which in particular included a sketch of the results presented in
Theorem 1 of Section 2. We are also grateful to Paul-André Melliès and Noam Zeilberger for very fruitful related
discussions, which motivated us to investigate the fibrational properties of source and target functors, and also the
notion of double categories (cf. Section 3).

2. Fibrational structures relevant to rewriting theories

In this section, we will first introduce the mathematical theory for a number of fibrational structures, namely the
well-known notions of Grothendieck fibration and Grothendieck opfibration, but also multi-opfibrations and residual
multi-opfibrations, which, to the best of our knowledge, are original results of our work. In the second part of this
section, we will then demonstrate that the categorical notions of pullbacks, pushouts and final pullback complements
provide natural examples of the aforementioned fibrational structures, which will provide a quintessential link to
categorical rewriting theory (as will be further developed in Sections 3 and 4).

2.1. Grothendieck fibrations and opfibrations
For the notion of Grothendieck fibrations and opfibrations to be discussed below, we will mostly follow the notions

and conventions of [45].

Definition 1. A functor G : E! B is a Grothendieck fibration if the following property holds:
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b b0f
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e e0
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f=G(�( f ))

�( f )

G :

8

e e0 e00
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f
g=G(�)

(3)

The second line encodes that �( f ) is a Cartesian morphism, hence we will refer to it as a Cartesian lifting of f .

Definition 2. A functor G : E! B is a Grothendieck opfibration if the following property holds:

e e e0

8 : 9 :

b b0 b b0

e e0 e00 e e0 e00

8 :
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(4)
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directed simple graphs was recently found [44] to provide a non-trivial example (cf. the discussion in Example 2 for
further details).
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discussions, which motivated us to investigate the fibrational properties of source and target functors, and also the
notion of double categories (cf. Section 3).

2. Fibrational structures relevant to rewriting theories

In this section, we will first introduce the mathematical theory for a number of fibrational structures, namely the
well-known notions of Grothendieck fibration and Grothendieck opfibration, but also multi-opfibrations and residual
multi-opfibrations, which, to the best of our knowledge, are original results of our work. In the second part of this
section, we will then demonstrate that the categorical notions of pullbacks, pushouts and final pullback complements
provide natural examples of the aforementioned fibrational structures, which will provide a quintessential link to
categorical rewriting theory (as will be further developed in Sections 3 and 4).

2.1. Grothendieck fibrations and opfibrations
For the notion of Grothendieck fibrations and opfibrations to be discussed below, we will mostly follow the notions

and conventions of [45].
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The second line encodes that "( f ) is an op-Cartesian morphism, so we will refer to it as an op-Cartesian lifting of f .

It is important to emphasize that the above definition does not require that the op-Cartesian lifting "( f ) for a given f
is unique, but only so up to isomorphism, as the following standard result clarifies (and with an analogous result for
Cartesian liftings for Grothendieck fibrations):

Lemma 1. Let G : E ! B be a Grothendieck opfibration. Then for any b � f ! b0 in B and e 2 E with G(e) = b, if
e� "( f )! e0 and e� "̃( f )! ẽ0 are two op-Cartesian liftings of f , there exits a unique isomorphism e0 � �! ẽ0 such
that "̃( f ) = � � "( f ).

Proof. The statement follows by considering the special case of the second line of (4) where g is an identity morphism,
noting that by op-Cartesianity thus "( f ) factors ˜"( f ) uniquely and vice versa. ⇤

2.2. Multi-opfibrations
Definition 3. A functor M : E! B is a multi-opfibration if the following property holds:

8

e

b b0

M

f

: 9

8>>>>>>><
>>>>>>>:

e e0j

b b0
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8
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g=M(� j)

M

↵

M(↵)

9! � j

^ 8k 2 J f ;e :
�9e0k � �k ! e00 : ↵ = �k � "k( f ) ^ M(�k) = g

�

) 9! e0j � �! e0k 2 iso(E) : "k( f ) = � � " j( f ) ^ M(�) = idb0

(5)

In words:

(i) For every b � f ! b0 in B and e 2 E with M(e) = b, there exists a (possibly empty) family J f ;e of multi-op-
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The second line encodes that "( f ) is an op-Cartesian morphism, so we will refer to it as an op-Cartesian lifting of f .

It is important to emphasize that the above definition does not require that the op-Cartesian lifting "( f ) for a given f
is unique, but only so up to isomorphism, as the following standard result clarifies (and with an analogous result for
Cartesian liftings for Grothendieck fibrations):

Lemma 1. Let G : E ! B be a Grothendieck opfibration. Then for any b � f ! b0 in B and e 2 E with G(e) = b, if
e� "( f )! e0 and e� "̃( f )! ẽ0 are two op-Cartesian liftings of f , there exits a unique isomorphism e0 � �! ẽ0 such
that "̃( f ) = � � "( f ).

Proof. The statement follows by considering the special case of the second line of (4) where g is an identity morphism,
noting that by op-Cartesianity thus "( f ) factors ˜"( f ) uniquely and vice versa. ⇤
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Definition 3. A functor M : E! B is a multi-opfibration if the following property holds:

8

e

b b0

M

f

: 9

8>>>>>>><
>>>>>>>:

e e0j

b b0

" j( f )

M

f=M(" j( f ))

M

9>>>>>>>=
>>>>>>>;

j2J f ;e

:

8

e e00

b b0 b00

M

f g

M

↵

M(↵)

:

e e0j e00

b b0 b00

M

9 " j( f )

M

f
g=M(� j)

M

↵

M(↵)

9! � j

^ 8k 2 J f ;e :
�9e0k � �k ! e00 : ↵ = �k � "k( f ) ^ M(�k) = g

�

) 9! e0j � �! e0k 2 iso(E) : "k( f ) = � � " j( f ) ^ M(�) = idb0

(5)

In words:

(i) For every b � f ! b0 in B and e 2 E with M(e) = b, there exists a (possibly empty) family J f ;e of multi-op-
Cartesian liftings e � " j( f )! e0f (with M(" j( f )) = f ).

(ii) Universal property of multi-opfibrations: Multi-op-Cartesianity of the liftings entails that for all e � ↵! e00 in
E and b0 � g ! b00 in B with M(↵) = g � f , there exists a j 2 J f ;e such that there exists a unique e0j � � j ! e00
with ↵ = � j � " j( f ) and M(� j) = g.

(iii) Essential uniqueness: If there exists some k 2 J f ;e such that e� "k( f )! e0k is another multi-op-Cartesian lifting
such that there exists a unique e0k � �k ! e00 with �k � "k( f ) = ↵ and M(�k) = g, then there exists a unique
isomorphism e0j � �! e0k such that "k( f ) = � � " j( f ) and M(�) = idb0 .

Corollary 1. Let M : E! B be a multi-opfibration. Then the following lifting property of isomorphisms is satisfied:

8

e e00

b b0 b00

M

f g

M

↵

M(↵)

: 8

e e0j e00

b b0 b00

M

" j( f )

M

f
g=M(� j)

M

↵

M(↵)

� j

:

(g 2 iso(B) ) � j 2 iso(E)) ^ ( f 2 iso(B) ) " j( f ) 2 iso(E))

(6)

9

Fibrational structures — “multi” variants à la Diers



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

• Finally, since " j( f ) =  � ��1
` , " j( f ) is an isomorphism, which concludes the proof.

⇤

We conclude the general discussion of multi-opfibrations with the following technical results, which will be used
in the proof of the associativity theorem for compositional rewriting theories in Section 3.5:

Lemma 2 (Pullback-splitting lemma for multi-opfibrations). Let E be a category that has pullbacks, and let M :
E! B be a multi-opfibration. Then the following property holds:

8

e e000

b001

b b0 b000

b002

M

f

g2 h2

g1
h1

M

↵

PB

:

e00j,k

e e0j e000

e00j,` b001

b b0 b000

b002

M

f

g2 h2

g1

h1

M

↵

PB

9 " j( f )

M

9 " j,k(g1)
9! � j,k

M

M

9 " j,`(g2) 9! � j,`

9! � j
PB

(9)

More explicitly, for every diagram such as on the left of (9), whose bottom part contains a pullback square in B, the
following properties hold true:

(i) There exists an E-morphism e � " j( f ) ! e0j such that there exists a unique E-morphism e0j � � j ! e000 with
M(" j( f )) = f and M(� j) = h1 � g1 = h2 � g2, and such that the diagram commutes.

(ii) There then exist E-morphisms e0j � " j,k(g1) ! e00j,k and e0j � " j,`(g2) ! e00j,` such that there exist unique E-
morphisms e00j,k � � j,k ! e000 and e00j,` � � j,` ! e000 such that M(" j,k(g1)) = g1, " j,`(g2)) = g2, M(� j,k) = h1 and
M(� j,`) = h2, and such that the diagram commutes.

(iii) Moreover, the square in E into e000 is a pullback.

Proof. Claims (i) and (ii) follow directly from repeated applications of the universal property of multi-opfibrations.
It thus remains to prove claim (iii), i.e., that the square in E on the top right of the diagram in (9) is indeed a pullback.
To this end, we construct the auxiliary diagram below by taking a pullback:

e00j,k

e e0j ep e000

e00j,` b001

b b0 bp b000

b002

M

f

g2 h2

g1

h1

M

PB

9 " j( f )

M

9 " j,k(g1)
9! � j,k

M

M

9 " j,`(g2) 9! � j,`

� j

9! ⇡

⇡01

⇡02

M

p=M(⇡)
p01

p02

PB

9! q

(10)

• By the universal property of pullbacks, there exists an E-morphism e0j � ⇡! ep (where ep denotes the pullback
object) that makes the diagram commute.

• Since M is a functor, we also obtain B-morphisms b0�p! bp (where bp = M(ep)), p01 = M(⇡01) and p02 = M(⇡02)
that make the diagram commute.
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• By the universal property of pullbacks, there exists a unique morphism bp � q ! b0 that makes the diagram
commute; since (p � q) � p = p � (q � p) = p and p is unique, (p � q) = idb0 and q � p = idb, i.e., p is both a
section and a retraction, hence an isomorphism (and thus also q = p�1).

• Finally, by applying Corollary 1 for f = M(⇡) and g = idbp , we may demonstrate that ⇡ is an isomorphism,
hence indeed the claim that the square in E marked in blue is a pullback.

⇤

2.3. Residual multi-opfibrations
Definition 4. A functor R : E! B is a residual multi-opfibration if the following property holds:

8

e

b b0

R

f

: 9

8>>>>>>>>><
>>>>>>>>>:

e e0j

b b0 b0j

⇢ j( f )

RR

f f? j

R(⇢ j( f ))

9>>>>>>>>>=
>>>>>>>>>;

j2J f ;e

:

8

e e00

b b0 b00

R

f g

R

↵

R(↵)

:

e e0j e00

b j

b b0 b00

R

9 ⇢ j( f )

f

R

↵

R(↵)

9! � j

R

f? j

g

R(� j)

^ 8k 2 J f ;e :
�9 e0k � �k ! e00 : �k � ⇢k( f ) = ↵ ^ g = R(�k) � f?k

�

) 9! e0j � �! e0k 2 iso(E) : ⇢k( f ) = � � ⇢ j( f ) ^ � j = �k � � ^ f?k = R(�) � f? j

(11)

In words:

(i) For every b � f ! b0 in B and e 2 E with R(e) = b, there exists a (possibly empty) family J f ;e of residual
multi-op-Cartesian liftings e � ⇢ j( f )! e0j (with R(⇢ j( f )) = f? j � f , and with f? j referred to as a residue).

(ii) Universal property of residual multi-opfibrations: Residual multi-op-Cartesianity of the liftings entails that for
all e�↵! e00 in E and b0 �g! b00 in B with R(↵) = g� f , there exists a j 2 J f ;e such that there exists a unique
e0j � � j ! e00 with ↵ = � j � ⇢ j( f ) and g = R(� j) � f? j.

(iii) Essential uniqueness: If there exists some k 2 J f ;e such that e � ⇢k( f ) ! e0k is another residual multi-op-
Cartesian lifting, i.e., such that there exists a unique e0k � �k ! e00 with �k � ⇢k( f ) = ↵ and g = R(�k) � f?k, then
there exists a unique isomorphism e0j � �! e0k such that ⇢k( f ) = � � ⇢ j( f ), � j = �k � � and f?k = R(�) � f? j.

Remark 1. While the notion of multi-opfibration arose as a certain weakening of the notion of Grothendieck opfi-
bration, whereby op-Cartesian lifts for a given morphism are no longer required to exist, nor to be essentially unique,
the concept of residual multi-opfibrations is in a sense an even further weakening. The reason for introducing this
concept will become evident only when considering the salient examples of fibrational properties of final pullback
complement squares, and of sesqui-pushout direct derivations in the later parts of this paper.

Finally, we record the following technical result for residual multi-opfibrations, which will prove crucial in terms
of rewriting-theoretical applications (i.e., it plays a central role in the proof of the associativity theorem of Section 3.5):

12

Fibrational structures — “residual multi” variants



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

Corollary 2. Let R : E! B be a residual multi-opfibration. Then residues have the following universal property:

8

e e0j

b b0 b0j

R

f f? j

R

⇢ j

f? j� f

:

e e0k e0j

b0k

b b0 b0j

R

9 ⇢k( f )

f

R

⇢ j

f? j� f

9! �k

R

f?k

f? j

R(�k)

) �k 2 iso(C) ^ R(�k) 2 iso(B) (12)

In particular, this property entails that if a residue f?k factorizes a residue f? j as f? j = R(�k) � f?k for some �k 2 E,
then the residues f? j and f?k (both of the same morphism f 2 B) are related by an isomorphism R(�k) 2 iso(B), as
are their liftings ⇢ j( f ) = �k � ⇢k( f ) via �k 2 iso(E).

Proof. It su�ces to restate the second diagram in (12) in the following equivalent form:

e0k

e e0j e0j

b0k

b b0 b0j b0j

R

9 ⇢k( f )

f

R

f? j� f

R

f?k R(�k)

R

f? j

9! �k

⇢ j

(13)

The claim then follows by essential uniqueness of residual multi-opfibrations. ⇤

2.4. Examples of fibrational structures relevant for rewriting theory
Throughout this section, we will demonstrate that a number of constructions of commutative squares that form the

building blocks of standard categorical rewriting semantics in fact carry fibrational structures, which will eventually
allow us to instantiate our novel general compositional rewriting theory to these standard semantics.

Definition 5 ([35], Sec. 3.1). For a category C, a stable system of monicsM is a class of monomorphisms of C that

(i) includes all isomorphisms,

(ii) is stable under composition, and

(iii) is stable under pullback (i.e., if ( f 0,m0) is a pullback of (m, f ) with m 2M, then m0 2M).

Throughout this paper, we will reserve the notation ⇢ for monics inM, and ,! for generic monics.

Lemma 3. Let C be a category with a stable system of monics M. Then morphisms in C satisfy the following
decomposition property ofM-morphisms:

8g � f , g : g � f , g 2M) f 2M . (14)

Proof. Since g 2M is in particular a monomorphism, the square below

A B

A C

f

g

g� f

(15)

is a pullback, hence by stability ofM-morphisms under pullback, f 2M. ⇤
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Multi-sums (à la Diers)

rewriting semantics underlying a given crDC. As we will then further elaborate in Section 4.4, this new approach
in e↵ect reduces the burden of proof of compositionality to establishing that a given semantics for a given kind of
category does indeed yield a crDC, a task which in itself yields deep insights into the mathematical structure of
rewriting theories. Moreover, we envision that the kind of modularization and standardization a↵orded by our novel
crDC-based methodology will provide a strong theoretical foundation for formalizing compositional rewriting theories
in proof assistants such as Coq [46], Isabelle/HOL [47], or Lean [48].

3.1. Multi-sums
An atypical feature of fibrational structures relevant for compositional rewriting theories is the following type of

mathematical property, which will eventually play an important role in the static analysis of rewriting systems15:

Definition 11. Let C be a category. A multi-sum
P

(A, B) of two objects A and B of C is a family of cospans {A�mj !
Mj  n j � B} j2J such that for every cospan A � f ! X  g � B, there exists a j 2 J and morphism Mj � x ! X
such that f = x � mj and g = x � n j, and with the following (multi-) universal property: for every j, k 2 J such that
the corresponding multi-sum elements factor the cospan A � f ! X  g � B, there exists a unique isomorphism
Mj � �! Mk such that x = x0 � �:

A B

Mj

Mk

X

f g

m j n j

x

nk

mk

x0

9! �

(40)

We say that C has multi-sums if every pair of objects has a multi-sum.

While we postpone the presentation of some concrete examples of multi-sum structures to Section 4.3.1, su�ce it
here to introduce a technical result that will be necessary in our ensuing constructions:

Lemma 6 (Multi-sum extension). Let C be a category that has multi-sums and that has pullbacks. Then for every
commutative diagram such as in (41) below, where A ! M  B and C ! N  D are multi-sum elements, there
exists a universal arrow M ! N that makes the diagram commute.

A B

M

X C D

N

Y

9!
(41)

Proof. Construct the diagram in (42) below as follows:

15Multi-sums are a special case of the general theory of multi-(co-)limits due to Diers [22].
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Preliminaries: some notational conventions for double categories

• Since C has pullbacks, take a pullback in order to obtain the span X  P! N. Then by the universal property
of pullbacks, there exist morphisms A! P and B! P.

• Since C has multi-sums, the cospan A ! P  B factors through a multi-sum element A ! M0  B via a
morphism M0 ! P. But this entails that A! M0  B also factors the span A! X  B, hence by the universal
property of multi-sums there exists a unique isomorphism M ! M0, and the claim follows.

A B

M

M0

P

X

C D

N

Y

9!�

(42)

⇤

3.2. Double categories
Remark 6. Throughout this paper, we work exclusively with the “algebraic” order in compositions of morphisms
and commutative squares (i.e., g � f rather than the “diagram” order notation f ; g common in category theory). For
reasons of convenience, we will swap the roles of the classes of morphisms that have a weakly associative composition,
usually the vertical morphisms [49], to be the class of horizontal morphisms. (We opted for this particular convention
so that it is essentially a 90 degrees clockwise rotation of the standard mathematical one.) Finally, since we will be
exclusively interested in finitary categories, we will often not mention finitarity explicitly in what follows.

Definition 12 (Cf. e.g. [50, 49, 51]). A double category (DC) D is a weakly internal category in the 2-category CAT
of all categories [52]16.

In particular, this entails that a double category consists of a category D0 of objects and vertical morphisms, and
a category D1 of horizontal morphisms and squares of D, equipped with functors S ,T : D1 ! D0, referred to as
source and target functors, respectively (cf. Figure 2), and with a functor U : D0 ! D1 which maps every object
A of D0 to a horizontal unit UA (depicted in Figure 3(d) as identity horizontal morphisms), and every morphism f
of D0 to a horizontal unit square U f (depicted in Figure 3(d) as squares annotated with the symbol id... for better
readability). We denote vertical morphisms by ⇢ and horizontal morphisms by (, respectively. We denote by ⇧v
the vertical composition of squares as in Figure 3(a) (i.e., the associative composition operation of D1). D moreover
carries a weakly associative horizontal composition of squares (cf. Figure 3(b)) ⇧h : D1 ⇥D0 D1 ! D1. Finally, for
technical convenience, we assume without loss of generality17 that both types of compositions are strictly unitary (cf.
Figures 3(c) and 3(d)).

16Some authors prefer the term “pseudo double category”, cf. also nLab article on double categories.
17We follow here the viewpoint of [53], whereby utilizing the strictification theorem of pseudo double categories[49, Thm. 7.5], this amounts to

implicitly utilizing a pseudo-functor into an equivalent double category where unitarity is strict, thus not reducing generality of our constructions.
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Figure 2: Convention for source and target functors for double categories.
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�⇧v↵

↵
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(a) Vertical composition ⇧v.

· · · · · ·

8 : 9

· · · · · ·

↵ �

↵⇧h�

↵ �

(b) Horizontal composition ⇧h.

· ·

· ·

8↵ 2 D1 :

· ·

· ·

r

n m

s

r

s

n m

n m

↵

idr

ids

↵⇧vidr=↵

ids⇧h↵=↵

(c) (Strict) vertical unitarity.

· · · ·

8� 2 D1 :

· · · ·

n n

r

m

s

m

r

s

r

s

idn � idm

�⇧hidm=�

idn⇧h�=�

(d) (Strict) horizontal unitarity.

Figure 3: On the definition of double categories.
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Compositional rewriting double categories (crDCs)
3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:

8
4 � ⇤

N ⌅

r1r2

r21

n m
r021

↵21

: 9
4 � ⇤

N • ⌅

r1r2

r21

n m
r021

m0

r01r02

↵21

↵2 ↵1
:

8
4 � ⇤

N ⌥ ⌅

r1r2

r21

n m
r021

m00

s01s02

↵21

�2 �1
: 9!• '�! ⌥ 2 iso(D0) : m00 = ' � m0

(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001

�2 �1

�021

↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):
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1:1
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• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·
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r02⇧r01

1:1
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• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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: 9!• '�! ⌥ 2 iso(D0) : m00 = ' � m0

(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001
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↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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Compositional rewriting double categories (crDCs)
3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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�2 �1
: 9!• '�! ⌥ 2 iso(D0) : m00 = ' � m0

(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01
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1:1

r2 r1

r0021

r002 r001

�2 �1

�021

↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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crDCs satisfy a (universal!) Concurrency Theorem

3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·
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1:1
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• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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crDCs satisfy a (universal!) Concurrency Theorem

3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):
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• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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crDCs satisfy a (universal!) Concurrency Theorem

3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):
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• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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crDCs satisfy a (universal!) Concurrency Theorem

3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001

�2 �1

�021

↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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crDCs satisfy a (universal!) Concurrency Theorem

3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:
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(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:

8
4 � ⇤

N ⌅

r1r2

r21

n m
r021

↵21

: 9
4 � ⇤

N • ⌅

r1r2

r21

n m
r021

m0

r01r02

↵21

↵2 ↵1
:

8
4 � ⇤

N ⌥ ⌅

r1r2

r21

n m
r021

m00

s01s02

↵21

�2 �1
: 9!• '�! ⌥ 2 iso(D0) : m00 = ' � m0

(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001

�2 �1

�021

↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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crDCs satisfy a (universal!) Concurrency Theorem — PROOF

• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:

8
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↵2 ↵1
:

8
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N ⌥ ⌅
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r21
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m00

s01s02

↵21

�2 �1
: 9!• '�! ⌥ 2 iso(D0) : m00 = ' � m0

(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001

�2 �1

�021

↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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· · · ·
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·

⌃

· ⌥ ·

· · ·

r1

r002 r001

?

r01r02

r2

↵1↵2

�2

�02

�1

�01

(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.

· · · ·

·

· · ·

· · ·

r1

?

r2

r02 r01

r02⇧r01

r0021

r002 r001

�2

�021

�1

�01�02

(46)

⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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• Analysis: For direct derivation �21 along a composite rule (which itself is encoded in terms of �2 and �1),
there exist direct derivations (↵1,↵2), determined uniquely up to universal isomorphisms, such that the result of
performing ↵2 after ↵1 is isomorphic to the result of performing �21.

Consequently, modulo a suitable notion of isomorphisms (induced by essential uniqueness of the respective construc-
tions), the resulting sets of equivalence classes are isomorphic.

Proof. Synthesis part: Construct the diagram in (45) from the premise as follows:

• Via the universal property of multi-sums, there exists a cospan of D0-morphisms into an object ⌃ and a mediat-
ingM-morphism ⌃ ⇢ ·.
• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue ⌃ ⇢ ⌥ (marked ?)

and an D0-morphism ⌥ ⇢ · such that ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, there exist direct derivations �2 and �02 such that
↵2 = �02 ⇧v �2. Thus the claim follows by letting �21 := �02 ⇧h �01.

· · · ·
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r1
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(45)

Analysis part: Construct the diagram in (46) as follows:

• By the horizontal decomposition property of squares in D, there exist squares �02 and �01 such that �21 = �02 ⇧h �01.

• The claim follows be letting ↵i := �0i ⇧v �i for i = 1, 2.
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⇤

Remark 8. We invite the interested readers to compare the highly modularized and universal nature (i.e., indepen-
dently of the concrete rewriting semantics) of the above proof to the two examples of concurrency theorems for
non-linear DPO- and for non-linear SqPO-type semantics as presented in the original conference paper version [1]
of this work, and which are reproduced in Appendices Appendix B and Appendix C, respectively. In comparison
to these much more technically involved “direct” versions of the (equivalent) proofs, the high-level abstraction of-
fered by our novel fibrational approach to compositional rewriting theories permits to modularize the concurrency
theorem proof in a very e�cient manner, which in particular relies upon clearly separating the concrete definitions
of compositional rewriting theories (i.e., proving that a certain semantics and choice of base category gives rise to
a compositional rewriting double category (crDC)) from the universal structures o↵ered by a crDC, rendering the
proof of the concurrency theorem almost a triviality. We will provide a number of concrete realizations of crDCs in
Section 4.
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3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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n m
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: 9
4 � ⇤
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n m
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↵21

↵2 ↵1
:

8
4 � ⇤

N ⌥ ⌅

r1r2

r21

n m
r021

m00

s01s02

↵21

�2 �1
: 9!• '�! ⌥ 2 iso(D0) : m00 = ' � m0

(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001

�2 �1

�021

↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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3.5. Associativity theorem
Unlike for the case of the concurrency theorem, the statement and proof of which were a surprisingly straightfor-

ward and e�cient application of the fibrational concepts, the following theorem is indeed such a complex statement
that its proof relies much more non-trivially upon fibrational structures, which serve in a certain sense as a form of
“proof macros” without which even the statement of the proof would likely be completely incomprehensible even to
expert readers.

Theorem 9. Let D be a compositional rewriting double category. Then every diagram as in (47) below (encoding
the composition of rules r2 and r1, and of the composite with r3),

· · · · · ·

�

· • ·
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· ⌥ ·
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r02 r01
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r3

?
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(47)

determines uniquely up to universal isomorphisms a diagram as in (48) below (encoding a composition of r3 with r2,
and of the composite with r1), and vice versa:

· · · · · ·

⇤

· ⌅ ·

4

· N ·

r3 r2 r1

?

r02r03

r03⇧r20

?

r001

r0032

↵32

↵3 ↵2

↵001 (48)

Moreover, the equivalence is such that in addition

r003 ⇧h r0021 � r0032 ⇧h r001 . (49)

Thus for a suitable notion of isomorphisms (induced by the essential uniqueness of the respective constructions),
there exists an isomorphism between the (finite) sets of nested composites of the three rules in the two di↵erent nesting
orders. This amounts to a notion of associativity for the rule composition operation.

Proof. For the ) direction of the equivalence, construct the following diagram from the premise by applying the
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(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):
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• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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3.5. Associativity theorem
Unlike for the case of the concurrency theorem, the statement and proof of which were a surprisingly straightfor-

ward and e�cient application of the fibrational concepts, the following theorem is indeed such a complex statement
that its proof relies much more non-trivially upon fibrational structures, which serve in a certain sense as a form of
“proof macros” without which even the statement of the proof would likely be completely incomprehensible even to
expert readers.

Theorem 9. Let D be a compositional rewriting double category. Then every diagram as in (47) below (encoding
the composition of rules r2 and r1, and of the composite with r3),
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Moreover, the equivalence is such that in addition

r003 ⇧h r0021 � r0032 ⇧h r001 . (49)

Thus for a suitable notion of isomorphisms (induced by the essential uniqueness of the respective constructions),
there exists an isomorphism between the (finite) sets of nested composites of the three rules in the two di↵erent nesting
orders. This amounts to a notion of associativity for the rule composition operation.

Proof. For the ) direction of the equivalence, construct the following diagram from the premise by applying the

34

3.5. Associativity theorem
Unlike for the case of the concurrency theorem, the statement and proof of which were a surprisingly straightfor-

ward and e�cient application of the fibrational concepts, the following theorem is indeed such a complex statement
that its proof relies much more non-trivially upon fibrational structures, which serve in a certain sense as a form of
“proof macros” without which even the statement of the proof would likely be completely incomprehensible even to
expert readers.

Theorem 9. Let D be a compositional rewriting double category. Then every diagram as in (47) below (encoding
the composition of rules r2 and r1, and of the composite with r3),

· · · · · ·

�

· • ·

⌃

· ⌥ ·

r1

?

r2

r02 r01

r02⇧r01

r3

?

r003

r0021

↵003

↵21

↵2 ↵1

(47)

determines uniquely up to universal isomorphisms a diagram as in (48) below (encoding a composition of r3 with r2,
and of the composite with r1), and vice versa:

· · · · · ·

⇤

· ⌅ ·

4

· N ·

r3 r2 r1

?

r02r03

r03⇧r20

?

r001

r0032

↵32

↵3 ↵2

↵001 (48)

Moreover, the equivalence is such that in addition

r003 ⇧h r0021 � r0032 ⇧h r001 . (49)

Thus for a suitable notion of isomorphisms (induced by the essential uniqueness of the respective constructions),
there exists an isomorphism between the (finite) sets of nested composites of the three rules in the two di↵erent nesting
orders. This amounts to a notion of associativity for the rule composition operation.

Proof. For the ) direction of the equivalence, construct the following diagram from the premise by applying the

34



crDCs satisfy a (universal!) Associativity Theorem (= Thm. 9 in FCRT)

3.5. Associativity theorem
Unlike for the case of the concurrency theorem, the statement and proof of which were a surprisingly straightfor-

ward and e�cient application of the fibrational concepts, the following theorem is indeed such a complex statement
that its proof relies much more non-trivially upon fibrational structures, which serve in a certain sense as a form of
“proof macros” without which even the statement of the proof would likely be completely incomprehensible even to
expert readers.

Theorem 9. Let D be a compositional rewriting double category. Then every diagram as in (47) below (encoding
the composition of rules r2 and r1, and of the composite with r3),

· · · · · ·

�

· • ·

⌃

· ⌥ ·

r1

?

r2

r02 r01

r02⇧r01

r3

?

r003

r0021

↵003

↵21

↵2 ↵1

(47)

determines uniquely up to universal isomorphisms a diagram as in (48) below (encoding a composition of r3 with r2,
and of the composite with r1), and vice versa:

· · · · · ·

⇤

· ⌅ ·

4

· N ·

r3 r2 r1

?

r02r03

r03⇧r20

?

r001

r0032

↵32

↵3 ↵2

↵001 (48)

Moreover, the equivalence is such that in addition

r003 ⇧h r0021 � r0032 ⇧h r001 . (49)

Thus for a suitable notion of isomorphisms (induced by the essential uniqueness of the respective constructions),
there exists an isomorphism between the (finite) sets of nested composites of the three rules in the two di↵erent nesting
orders. This amounts to a notion of associativity for the rule composition operation.

Proof. For the ) direction of the equivalence, construct the following diagram from the premise by applying the

34

3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)
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(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):
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• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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orders. This amounts to a notion of associativity for the rule composition operation.

Proof. For the ) direction of the equivalence, construct the following diagram from the premise by applying the
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opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001

�2 �1

�021

↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.

32

3.5. Associativity theorem
Unlike for the case of the concurrency theorem, the statement and proof of which were a surprisingly straightfor-

ward and e�cient application of the fibrational concepts, the following theorem is indeed such a complex statement
that its proof relies much more non-trivially upon fibrational structures, which serve in a certain sense as a form of
“proof macros” without which even the statement of the proof would likely be completely incomprehensible even to
expert readers.

Theorem 9. Let D be a compositional rewriting double category. Then every diagram as in (47) below (encoding
the composition of rules r2 and r1, and of the composite with r3),

· · · · · ·

�

· • ·

⌃

· ⌥ ·

r1

?

r2

r02 r01

r02⇧r01

r3

?

r003

r0021

↵003

↵21

↵2 ↵1

(47)

determines uniquely up to universal isomorphisms a diagram as in (48) below (encoding a composition of r3 with r2,
and of the composite with r1), and vice versa:

· · · · · ·

⇤

· ⌅ ·

4

· N ·

r3 r2 r1

?

r02r03

r03⇧r20

?

r001

r0032

↵32

↵3 ↵2

↵001 (48)

Moreover, the equivalence is such that in addition

r003 ⇧h r0021 � r0032 ⇧h r001 . (49)

Thus for a suitable notion of isomorphisms (induced by the essential uniqueness of the respective constructions),
there exists an isomorphism between the (finite) sets of nested composites of the three rules in the two di↵erent nesting
orders. This amounts to a notion of associativity for the rule composition operation.

Proof. For the ) direction of the equivalence, construct the following diagram from the premise by applying the
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3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:

8
4 � ⇤

N ⌅

r1r2

r21

n m
r021

↵21

: 9
4 � ⇤

N • ⌅

r1r2

r21

n m
r021

m0

r01r02

↵21

↵2 ↵1
:

8
4 � ⇤

N ⌥ ⌅

r1r2

r21

n m
r021

m00

s01s02

↵21

�2 �1
: 9!• '�! ⌥ 2 iso(D0) : m00 = ' � m0

(43)
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analysis part of the concurrency theorem, obtaining squares ↵02 and ↵01 from ↵21:

· · · · · ·

�

· • ·

⌃

· ⌥ ⌦ ·

r1

?

r2

r02 r01

r02⇧r01

r3

?

r003

r0021

r002 r001

↵003

↵21

↵2 ↵1

↵02 ↵01

(50)

Next, we apply a part of the synthesis construction of the concurrency theorem, in that we synthesize from the
squares ↵003 and ↵02 ⇧v ↵2 a composite of rules r3 and r2 (as encoded via the squares �3 and �2, with the composite rule
itself omitted for clarity) and squares �03 and �02 such that ↵003 = �

0
3 ⇧v �3 and ↵02 ⇧v ↵2 = �02 ⇧v �2:

· · · · · ·

⇤ �

· ⌅ ·

· • ·

⌃

· ⌥ ⌦ ·

r1

?

r2

r02 r01

r3

?

r003 r002 r001

?

r03 r02

↵003

↵2

↵1

↵02 ↵01

�3

�03

�2

�02

(51)

We now apply the following sequence of manipulations to obtain the diagram in (52):

• Since D0 has multi-sums, the cospan dom(r2) ⇢ ⌦ � codom(r1) factors uniquely up to isomorphisms into a
cospan dom(r2) ⇢ 4� codom(r1) and a mediating morphism 4⇢ ⌦.

• Via the multi-sum extension Lemma, there exists a D0 morphism �⇢ 4 between the multi-sum objects � and 4
(and analogously between the multi-sum objects ⇤ and ⌃, albeit this is irrelevant for the proof and thus omitted
from the diagrams).

• Since the target functor T : D1 ! D0 is a residual multi-opfibration, there exists a residue 4⇢ N (marked ?),
a D0-morphism N ⇢ ⌦ and squares �1 and �01 such that ↵01 ⇧v ↵1 = �01 ⇧v �1.

• Since the source functor S : D1 ! D0 is a multi-opfibration, the previously described operation induces squares
�2 and �02 such that �02 ⇧v �2 = �02, and �3 and �03 such that �03 ⇧v �3 = �03.
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· · · · · ·

⇤ �

· ⌅ ·

4

· • ·

::: :: ⌃ N :

· ⌥ ⌦ ·

r1

?

r2

r02 r01

r3

?

r003 r002 r001

?

r03 r02

?

↵003

↵2

↵1

↵02 ↵01

�3

�03

�2

�02
�3

�03

�2

�02

�1

�01

(52)

For the final step of the) part of the proof, we construct the diagram in (53) below via the following steps:

• Take a pullback (admissible since D0 has pullbacks) in order to obtain the object marked ; on the back rightmost
part of the diagram in (53), yielding a number of morphisms as indicated; since D0 morphisms are stable under
pullback, and pullbacks in D0 are e↵ective, all of the morphisms formed in this step are in D0.

• Since the source functor is a multi-opfibration, by applying the pullback splitting lemma for multi-opfibrations
we obtain squares �1, �01 and "1 such that ↵1 = "1 ⇧v �1 and �1 = �01 ⇧v �1. The lemma also implies that since
the square from the object marked ; was by construction a pullback, so is the square from O, which by the
universal property of pullbacks yields the existence of a morphism into O (marked +), which is by e↵ectiveness
of pullbacks a D0 morphism.

• Applying the pullback splitting lemma for multi-opfibrations once again, we may obtain the configuration in
the middle of the diagram in (53), i.e., squares �2, �02 and "2 such that ↵2 = "2 ⇧v �2 and �02 ⇧v �2 = �02 ⇧v �2. The
lemma also entails that since the commutative square from O is a pullback, the square from the object marked
; ; is a pullback, too, and there exists the D0 morphism codom(r2) ⇢; ;.

• By the universal property of residues, since ↵1 = "1 ⇧v �1, and since the residue � ⇢ • marked ? (which
forms the second factor of of T (↵1)) factors through O ⇢ • (i.e., through T ("1)), we find that the square "1 is a
(vertical) isomorphism. By the lifting property of isomorphisms in multi-opfibrations, the square "2 is then an
isomorphism, too.

• The latter point entails that there exists a D0 morphism ⌃ ⇢::, which together with ↵02 ⇧h ↵01 = (�2 ⇧h �1) ⇧v
(�02 ⇧h �01) implies via the universal property of residues that the squares �2 and �1 are (vertical) isomorphisms,
and thus by the lifting property of isomorphisms in multi-opfibrations, so is �3. This concludes the proof of the
) part of the theorem.

36

crDCs satisfy a (universal!) Associativity Theorem — PROOF SKETCH



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

· · · · · ·

⇤ �

· ⌅ ·

4

; ; O ;

· • ·

::: :: ⌃ N :

· ⌥ ⌦ ·

r1

?

r2

r02 r01

r3

?

r003 r002 r001

?

r03 r02

?

⇥

+

↵003

↵2

↵1

↵02
↵01

�3

�03

�2

�02�3

�03

�2

�02

�1

�01

�1

�01

"1

�2

�02

"2

(53)
For the( part of the claim, let us yet again invoke the analysis part of the concurrency theorem in order to exhibit

a decomposition of the form ↵32 = ↵03 ⇧h ↵02 as in (54).

· · · · · ·

⇤

· ⌅ ·

4

· :: N ·

r3 r2 r1

?

r02r03

r03⇧r20

?

r001
r0032

r002r003

↵32

↵3 ↵2

↵001

↵03 ↵02

(54)

To proceed, we may now apply the synthesis part of the concurrency theorem to the sequence of composite squares
↵02 ⇧v ↵2 and ↵01 ⇧v ↵1, again not explicitly carrying out the horizontal composition of squares in the last step of the
construction. We thus arrive at a diagram as in (55) below, with the squares �1, �01, �2 and �02 arising from the
aforementioned construction (where the existence of the D0 morphism �⇢ • follows from the multi-sum extension
Lemma):

· · · · · ·

⇤ �

· • ·

· ⌅ ·

4

· :: N ·

r3 r2 r1

?

r02r03

r03⇧r20

?

r001
r0032

r002r003

?

↵32

↵3

↵2

↵001

↵03 ↵02

�2

�02

�1

�01

(55)
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Instantiations of rewriting semantics in theory and applications 
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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organic chemistry

knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Figure 3: On the definition of double categories.
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Figure 2: Convention for source and target functors for double categories.
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(a) Vertical composition ⇧v.

· · · · · ·
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· · · · · ·
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↵ �

(b) Horizontal composition ⇧h.

· ·

· ·

8↵ 2 D1 :

· ·

· ·

r
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r

s

n m

n m

↵

idr

ids
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(c) (Strict) vertical unitarity.

· · · ·

8� 2 D1 :

· · · ·

n n

r

m

s

m

r

s

r

s

idn � idm

�⇧hidm=�
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(d) (Strict) horizontal unitarity.

Figure 3: On the definition of double categories.
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Instantiations of rewriting semantics in theory and applications 
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can

Preprint 5/48

organic chemistry

knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Figure 2: Convention for source and target functors for double categories.
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Figure 3: On the definition of double categories.
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Stable system of monics

Corollary 2. Let R : E! B be a residual multi-opfibration. Then residues have the following universal property:

8

e e0j

b b0 b0j

R

f f? j

R

⇢ j

f? j� f

:

e e0k e0j

b0k

b b0 b0j

R

9 ⇢k( f )

f

R

⇢ j

f? j� f

9! �k

R

f?k

f? j

R(�k)

) �k 2 iso(C) ^ R(�k) 2 iso(B) (12)

In particular, this property entails that if a residue f?k factorizes a residue f? j as f? j = R(�k) � f?k for some �k 2 E,
then the residues f? j and f?k (both of the same morphism f 2 B) are related by an isomorphism R(�k) 2 iso(B), as
are their liftings ⇢ j( f ) = �k � ⇢k( f ) via �k 2 iso(E).

Proof. It su�ces to restate the second diagram in (12) in the following equivalent form:

e0k

e e0j e0j

b0k

b b0 b0j b0j

R

9 ⇢k( f )

f

R

f? j� f

R

f?k R(�k)

R

f? j

9! �k

⇢ j

(13)

The claim then follows by essential uniqueness of residual multi-opfibrations. ⇤

2.4. Examples of fibrational structures relevant for rewriting theory
Throughout this section, we will demonstrate that a number of constructions of commutative squares that form the

building blocks of standard categorical rewriting semantics in fact carry fibrational structures, which will eventually
allow us to instantiate our novel general compositional rewriting theory to these standard semantics.

Definition 5 ([35], Sec. 3.1). For a category C, a stable system of monicsM is a class of monomorphisms of C that

(i) includes all isomorphisms,

(ii) is stable under composition, and

(iii) is stable under pullback (i.e., if ( f 0,m0) is a pullback of (m, f ) with m 2M, then m0 2M).

Throughout this paper, we will reserve the notation ⇢ for monics inM, and ,! for generic monics.

Lemma 3. Let C be a category with a stable system of monics M. Then morphisms in C satisfy the following
decomposition property ofM-morphisms:

8g � f , g : g � f , g 2M) f 2M . (14)

Proof. Since g 2M is in particular a monomorphism, the square below

A B

A C

f

g

g� f

(15)

is a pullback, hence by stability ofM-morphisms under pullback, f 2M. ⇤
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Some universal constructions

Appendix A. Collection of definitions and auxiliary properties

Appendix A.1. Universal properties
Lemma 13. Let C be a category.

X X

A B A B A B

D C D C D C

E Y

(i) (ii) (iii)

e

e0

c

d

a

bPO

9!ē

a

d

c

b

9!x̄
x

x0

PB

a

d b

c

FPC

x
a�x

c0

y

9!x0

Then the following properties hold:

1. Universal property of pushouts (POs): Given a commutative diagram as in (i), there exists a morphism D� ē!
E that is unique up to isomorphisms.

2. Universal property of pullbacks (PBs): Given a commutative diagram as in (ii), there exists a morphism X� x̄!
A that is unique up to isomorphisms.

3. Universal property of final pullback complements (FPCs): Given a commutative diagram as in (iii) where
(a � x.y) is a PB of (d, c0), there exists a morphism Y � x̄0 ! C that is unique up to isomorphisms, and which
satisfies that (x, y) is the PB of (b, x0).

Appendix A.2. Stability properties
Definition 24. Let C be a category.
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• A pushout (⇤) in C is said to be stable under pullbacks i↵ for every commutative cube over the pushout (⇤) such
as in the diagram above where all vertical squares are pullbacks, the top square (†) is a pushout.

• A final pullback complement (FPC) (⇤) in C is said to be stable under pullbacks i↵ for every commutative cube
over the FPC (⇤) such as in the diagram above where all vertical squares are pullbacks, the top square (†) is an
FPC.

Lemma 14. Two important examples of categories for which suitable stability properties for pushouts hold are given
as follows:

1. In every adhesive category C, pushouts along monomorphisms (i.e., pushouts such as (⇤) in (A.1) with a 2
mono(C) or b 2 mono(C)) are stable under pullbacks [4]. This property is indeed axiom (A-iii-a) of the van
Kampen property of adhesive categories [6].

2. In a regular mono (rm)-quasi-adhesive category [6, Def. 1.1 and Cor. 4.7], all pushouts along regular monomor-
phisms exist, these pushouts are also pullbacks, and in particular pushouts along regular monomorphisms are
stable under pullbacks. A useful characterization of rm-quasi-adhesive categories is the following: a small
category C which has pullbacks and which pushouts along regular monomorphisms is rm-quasi-adhesive i↵ it
has a full embedding into a quasi-topos (preserving the aforementioned two properties).

Lemma 15 ([23], Lem. 1). Let C be a category that has pullbacks. Then FPCs are stable under pullbacks.
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1. Take a pullback of Y � b! B00 � B, obtaining the span Y � P! B0 (where Y � P is inM by stability
ofM-morphisms under pullback). By the universal property of pullbacks, and since FPCs are pullbacks,
there exist unique morphisms X � x! P and P � p! A0 that make the diagram commute.

2. By pullback-pullback decomposition, the square over P! B0 is a pullback. Thus by the universal property
of FPCs, there exists a unique morphism Y � a ! A0 that makes the diagram commute, and such that the
square over Y � a! A0 is a pullback.

3. Invoking the universal property of FPCs yet again, there exists a unique morphism Y � b ! A00 that
makes the diagram commute, and such that the square over this morphism is a pullback. By pullback-
pullback decomposition (or, equivalently, by vertical pasting of pullback squares), the square over the
cospan Y ! A00 � A is a pullback, which concludes the proof.

X X

P A B

(a) A B C (b) P

A0 B0 C0 A0 B0

Y A00 B00

Y

9! x

9! p

9! b
9! a

9! x

9! p

9!

FPC

FPC FPC

FPC

(17)

Associativity of the horizontal and vertical pasting operations is manifest from the definition. Thus it remains to verify
that these compositions are unital. To this end, note fist that the units of the horizontal and vertical compositions are
squares of the form idm and id f , respectively, as below:

A A A B

(idm) := id f :=

B B A B

mm

f

f

(18)

The only non-trivial part to prove is thus that squares of shapes idm and id f are simultaneously pullbacks, pushouts
and FPCs. The first two properties are a standard exercise to prove, yet the proof of the FPC property deserves a brief
clarification:

X X

A A A B

B B A B

Y Y

m m

y
y

(i) (ii) �

x

f

f

x���1

(19)

As depicted in (19)(i), horizontal unitality trivially follows from pullback-pullback decomposition. However, in order
to prove that vertical unitality holds, in a situation as depicted in (19)(ii), the additional observation necessary is that
isomorphisms are stable under pullbacks, from which then together with pullback-pullback decomposition the claim
follows. ⇤

We will now investigate a number of interesting fibrational structures carried by the boundary functors of the
various categories of squares.
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“Vertical” and “horizontal” categories of PBs, POs and FPCs

For later convenience, we introduce the following auxiliary definitions, which permit to succinctly express whether
or not a given category admits pullbacks, pushouts or final pullback complements for generic input data, or only when
the morphisms on the input are of a certain nature relative to a stable system of monics:

Definition 6. Let C be a category.

(i) C has pullbacks if C admits pullbacks of all cospans.

(ii) C has pushouts if C admits pushouts of all spans.

(iii) C has final pullback complements (FPCs) if C admits FPCs along arbitrary sequences of composable morphisms
A! B! B0.

If C has a stable system of monicsM, we define also the following variants and additional concepts:

(i’) C has pullbacks alongM-morphisms if pullbacks of cospans of the form A! B � B0 exist in C.

(ii’) C has pushouts alongM-morphisms if pushouts of spans of the form A B ⇢ B0 exist in C.

(iii’) C has final pullback complements (FPCs) alongM-morphisms i↵ FPCs of sequences of composable morphisms
of the form A! B ⇢ B0 exist in C.

(iv’) M-morphisms are stable under pushout in C if whenever A0 ! B0  � � B is a pushout of a span of the form
A0  ↵�A! B, then � 2M.

(v’) pushouts alongM-morphisms are stable underM-pullbacks7 in C if for all diagrams of the form below,

A B

A0 B0

C D

C0 D0

g

�0

g0

�0

PO

� �

↵0 �0

↵

f 0

f

PB
PB

�

PB

PB

(16)

where the bottom square is a pushout along an M-morphism, and the vertical squares are pullbacks along
M-morphisms, then the top square is a pushout.

Definition 7. Let C be a category with a stable system of monics M that has pullbacks along M-morphisms. Let
T be a type of commutative squares, for which we consider PB (pullbacks), PO (pushouts), or FPC (final pullback
complements). Then we define the following categories:

(i) Th(C,M) has as objects the morphisms ofM, and as morphisms commutative squares of type T along arbitrary
morphisms of C, and a morphism composition induced by horizontal pasting of squares of type T.

(ii) Tv(C,M) has as objects the morphisms of C, and as morphisms commutative squares of type T along M-
morphisms, and a morphism composition induced by vertical pasting of squares of type T.

7Note that throughout this paper, in order to avoid any potential confusion of concepts, we will follow the convention that “stable under pullback”
will exclusively refer to stability of morphisms when considering individual pullback squares (i.e., as in the definition ofM-morphisms are stable
under pullback), while “stable under pullbacks” will always refer to stability properties that involve commutative cubes with vertical squares being
pullbacks (i.e., as in the definition of pushouts alongM-morphisms are stable underM-pullbacks).
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Figure 1: Boundary functors.

Following the convention of depicting morphisms ofM with the symbol ⇢, we depict in Figure 1 a square of type T
(withM-morphism drawn vertically), and moreover the action of four “boundary functors” that naturally arise from
the above definitions:

(a) The domain functor dom : Th(C,M)! C and the codomain functor codom : Th(C,M)! C.

(b) The source functor S : Tv(C,M) ! C|M and the target functor codom : Tv(C,M) ! C|M, where C|M has the
same objects as C, and as morphisms those ofM.

Lemma 4. The categories Th(C,M) and Tv(C,M) for T 2 {PB,PO,FPC} as introduced in Definition 7 are well-
defined, i.e., their composition operations are well-typed, associative and unital.

Proof. Well-definedness of the horizontal and vertical composition operations is a standard result for pullback and
pushout squares, while for final pullback complements (FPCs) this is a slight generalization of Lemma 17(5. & 6.):

• horizontal FPC composition: in sub-diagram (a) of (17) below, given two horizontally composed FPC squares,
an outer square which is a pullback, and morphisms X ! A and X ! C such that the diagram commutes, we
have to prove that there exists a unique morphism Y ! A0 such that the diagram commutes and such that the
square over Y ! A0 is a pullback.

1. By the universal property of FPCs, there exists a unique morphism Y � b! B0.

2. Take a pullback of Y � b! B0 � B, obtaining the span Y � P! B0 (where Y � P is inM by stability
ofM-morphisms under pullback). By the universal property of pullbacks, and since FPCs are pullbacks,
there exist unique morphisms X � x ! P and P � p ! A that make the diagram commute. Thus by the
universal property of FPCs, there exists a unique morphism Y � a! A0.

3. Finally, by pullback-pullback decomposition, the square over Y � a ! A0 is a pullback, which proves the
claim.

• vertical FPC composition: in sub-diagram (b) of (17) below, given two vertically composed FPC squares, an
outer square which is a pullback, and morphisms X ! A and X ! B such that the diagram commutes, we have
to prove that there exists a unique morphism Y ! A00 such that the diagram commutes and such that the square
over Y ! A00 is a pullback.
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Following the convention of depicting morphisms ofM with the symbol ⇢, we depict in Figure 1 a square of type T
(withM-morphism drawn vertically), and moreover the action of four “boundary functors” that naturally arise from
the above definitions:

(a) The domain functor dom : Th(C,M)! C and the codomain functor codom : Th(C,M)! C.

(b) The source functor S : Tv(C,M) ! C|M and the target functor codom : Tv(C,M) ! C|M, where C|M has the
same objects as C, and as morphisms those ofM.

Lemma 4. The categories Th(C,M) and Tv(C,M) for T 2 {PB,PO,FPC} as introduced in Definition 7 are well-
defined, i.e., their composition operations are well-typed, associative and unital.

Proof. Well-definedness of the horizontal and vertical composition operations is a standard result for pullback and
pushout squares, while for final pullback complements (FPCs) this is a slight generalization of Lemma 17(5. & 6.):

• horizontal FPC composition: in sub-diagram (a) of (17) below, given two horizontally composed FPC squares,
an outer square which is a pullback, and morphisms X ! A and X ! C such that the diagram commutes, we
have to prove that there exists a unique morphism Y ! A0 such that the diagram commutes and such that the
square over Y ! A0 is a pullback.

1. By the universal property of FPCs, there exists a unique morphism Y � b! B0.

2. Take a pullback of Y � b! B0 � B, obtaining the span Y � P! B0 (where Y � P is inM by stability
ofM-morphisms under pullback). By the universal property of pullbacks, and since FPCs are pullbacks,
there exist unique morphisms X � x ! P and P � p ! A that make the diagram commute. Thus by the
universal property of FPCs, there exists a unique morphism Y � a! A0.

3. Finally, by pullback-pullback decomposition, the square over Y � a ! A0 is a pullback, which proves the
claim.

• vertical FPC composition: in sub-diagram (b) of (17) below, given two vertically composed FPC squares, an
outer square which is a pullback, and morphisms X ! A and X ! B such that the diagram commutes, we have
to prove that there exists a unique morphism Y ! A00 such that the diagram commutes and such that the square
over Y ! A00 is a pullback.
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pushout squares, while for final pullback complements (FPCs) this is a slight generalization of Lemma 17(5. & 6.):

• horizontal FPC composition: in sub-diagram (a) of (17) below, given two horizontally composed FPC squares,
an outer square which is a pullback, and morphisms X ! A and X ! C such that the diagram commutes, we
have to prove that there exists a unique morphism Y ! A0 such that the diagram commutes and such that the
square over Y ! A0 is a pullback.

1. By the universal property of FPCs, there exists a unique morphism Y � b! B0.

2. Take a pullback of Y � b! B0 � B, obtaining the span Y � P! B0 (where Y � P is inM by stability
ofM-morphisms under pullback). By the universal property of pullbacks, and since FPCs are pullbacks,
there exist unique morphisms X � x ! P and P � p ! A that make the diagram commute. Thus by the
universal property of FPCs, there exists a unique morphism Y � a! A0.

3. Finally, by pullback-pullback decomposition, the square over Y � a ! A0 is a pullback, which proves the
claim.

• vertical FPC composition: in sub-diagram (b) of (17) below, given two vertically composed FPC squares, an
outer square which is a pullback, and morphisms X ! A and X ! B such that the diagram commutes, we have
to prove that there exists a unique morphism Y ! A00 such that the diagram commutes and such that the square
over Y ! A00 is a pullback.
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2.4.1. Fibrational properties of the domain functors
Theorem 1. Let C be a category with a stable system of monicsM, and with the following additional properties:

1. C has pullbacks.

2. C has pushouts and final pullback complements (FPCs) alongM-morphisms.

3. Pushouts alongM-morphisms are stable under pullbacks.

4. Pushouts alongM-morphisms are pullbacks.

Then the domain functor dom : PBh(C,M) ! C from the category of pullback squares along M-morphisms and
under horizontal composition to the underlying category C satisfies the following properties:8

(i) dom : PBh(C,M)! C is a Grothendieck fibration, with the Cartesian liftings given by FPCs.

(ii) dom : PBh(C,M)! C is a Grothendieck opfibration, with the op-Cartesian liftings given by pushouts.

(iii) dom : PBh(C,M)! C satisfies a Beck-Chevalley condition (BCC): adopting the notation m � ( f , f 0)! n for
morphisms in PBh(C,M) (cf. Figure 1), consider a commutative square in PBh(C,M) that is mapped by dom
into a pullback square in C:

m n A B

o p C D

( f , f 0)

(h.h0)

(i,i0)

(g,g0) dom h

i

f

gPB (20)

Then the following two equivalent conditions hold:

• (BCC-1): ( f , f 0) is op-Cartesian if (i, i0) is op-Cartesian and (g, g0) and (h, h0) are Cartesian.
• (BCC-2): (g, g0) is Cartesian if (h, h0) is Cartesian and ( f , f 0) and (i, i0) are op-Cartesian.

Proof. As the first two parts of the proof will demonstrate, the dom functor is in a certain sense a prototypical example
of a Grothendieck bifibration, in that the fibration and opfibration structures arise directly from universal properties of
FPCs and pushouts, respectively.

Ad (i) — dom is a Grothendieck fibration: this statement follows by specializing the defining equation (3) to the
case of the dom functor. The existence of Cartesian liftings is guaranteed since the category C by assumption has
FPCs alongM-morphisms, while the requisite universal property that qualifies the liftings as being Cartesian (i.e., the
second line of (3)) is satisfied via the universal property of FPCs.

Ad (ii) — dom is a Grothendieck opfibration: specializing the defining equation (4) to the case of the dom functor,
we find that the op-Cartesian liftings exist in the form of pushouts (which are guaranteed to exist since C by assumption
has pushouts alongM-morphisms, while the universal property which qualifies this liftings as op-Cartesian (i.e., the
second line of (4)) is satisfied via pullback-pushout decomposition.

Ad (iii) — Beck-Chevalley condition (BCC):9

• (BCC-1): the premise of this condition is explicitly depicted in (21), i.e., the top and back squares are pullbacks,
the left and right squares are FPCs, and the front square is a pushout. In order to demonstrate that this entails
that the back square is a pushout, we take a pullback of the cospan C0 � i0 ! D0  g0 � B0, obtaining a span
C0  P! D0.

8The authors would like to express their appreciation for very insightful comments and suggestions made by Richard Garner (private commu-
nication) on the conference version [1] of this paper, whereby he essentially outlined the constructions and results described in Theorem 1. The
developments for the other boundary functors were inspired by this particular example.

9We invite the interested readers to compare this statement to an auxiliary step in the proof of the sesqui-pushout variant of the concurrency
theorem in the conference version of this paper [1], which is here identified as carrying an independent interpretation as a notion relevant to the
fibrational structures of the dom functor.
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– By the universal property of pullbacks, there exist unique morphisms A ! P and A0 ! P as indicated
with dashed arrows.

– By pullback-pullback decomposition, the squares over C0  P and over P! B0 are both pullbacks.

– Since by assumption pushouts are stable under pullbacks, the square over P! B0 is a pushout.

– Since according to Lemma 15 in a category such as C which by assumption has pullbacks, FPCs are stable
under pullbacks, the square over C0  P is an FPC.

– By the universal property of FPCs, the arrow A0 ! P is an isomorphism, hence the back square is a
pushout, which proves (BCC-1).

A B

C D

A0 B0

C0 D0

f

h

i

g

o p

m n

i0

h0

f 0

g0

?

FPC

FPC

PO

PB

take PB�����!

A B

C D

A0 B0

P

C0 D0

f

h

i

g

o p

m n

i0

h0

f 0

g0

?

FPC

FPCPO

PB

PB

(21)

• (BCC-2): the premise of this condition is explicitly depicted in (22), i.e., the top and right squares are pullbacks,
the left square is an FPC, and the front and back squares are pushouts. In order to demonstrate that this entails
that the right square is a pushout, we take a final pullback complement of the sequence of morphisms B � g !
D ⇢ D0 (which is admissible since by assumption C has FPCs alongM-morphisms), obtaining a sequence of
morphisms B! F ! D0.

– Since the front and left squares are morphisms in PBh(C,M) and thus pullbacks, by pullback-pullback
composition so is the vertical diagonal square that arises as the composite of the front and left square. Thus
by the universal property of FPCs, there exists a unique morphism A0 ! F as indicated with a dashed
arrow. Since the back square is a pushout, by the universal property of pushouts there exists a unique
morphism B0 ! F, again indicated with a dashed arrow.

– Noting that the resulting configuration corresponds precisely to the precondition of (BCC-1), we find
that the square over A0 ! F is a pushout. Thus by the universal property of pushouts, B0 ! F is an
isomorphism, and thus the right square is an FPC, which proves (BCC-2).
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– By the universal property of pullbacks, there exist unique morphisms A ! P and A0 ! P as indicated
with dashed arrows.

– By pullback-pullback decomposition, the squares over C0  P and over P! B0 are both pullbacks.

– Since by assumption pushouts are stable under pullbacks, the square over P! B0 is a pushout.

– Since according to Lemma 15 in a category such as C which by assumption has pullbacks, FPCs are stable
under pullbacks, the square over C0  P is an FPC.

– By the universal property of FPCs, the arrow A0 ! P is an isomorphism, hence the back square is a
pushout, which proves (BCC-1).
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• (BCC-2): the premise of this condition is explicitly depicted in (22), i.e., the top and right squares are pullbacks,
the left square is an FPC, and the front and back squares are pushouts. In order to demonstrate that this entails
that the right square is a pushout, we take a final pullback complement of the sequence of morphisms B � g !
D ⇢ D0 (which is admissible since by assumption C has FPCs alongM-morphisms), obtaining a sequence of
morphisms B! F ! D0.

– Since the front and left squares are morphisms in PBh(C,M) and thus pullbacks, by pullback-pullback
composition so is the vertical diagonal square that arises as the composite of the front and left square. Thus
by the universal property of FPCs, there exists a unique morphism A0 ! F as indicated with a dashed
arrow. Since the back square is a pushout, by the universal property of pushouts there exists a unique
morphism B0 ! F, again indicated with a dashed arrow.

– Noting that the resulting configuration corresponds precisely to the precondition of (BCC-1), we find
that the square over A0 ! F is a pushout. Thus by the universal property of pushouts, B0 ! F is an
isomorphism, and thus the right square is an FPC, which proves (BCC-2).
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As the above results indicate, the domain functor dom : PBh(C,M) ! C is (for suitable categories C) a
Grothendieck bifibration, i.e., simultaneously a Grothendieck fibration and opfibration. An interesting variant of
this type of result –which moreover has important computational meaning in its own right– arises when considering
the domain functors from the categories POh and FPCh instead, which permits to state fibrational properties under
considerably weaker assumptions on the underlying categories C:

Corollary 3. Let C be a category with a stable system of monicsM.

(i) If C has pushouts alongM-morphisms, the functor dom : POh(C,M)! C is a Grothendieck opfibration.

(ii) If C has FPCs alongM-morphisms, the functor dom : FPCh(C,M)! C is a Grothendieck fibration.

Proof. It is a straightforward exercise to demonstrate that for case (i), pushouts alongM-morphisms provide the op-
Cartesian liftings (as was also the case for dom : PBh(C,M)! C), while the op-Cartesianity properties of the liftings
is realized in the form of pushout-pushout decomposition. For case (ii), FPCs alongM-morphisms provide the Carte-
sian liftings, where the Cartesianity properties of liftings are realized in the form of horizontal FPC decomposition.
⇤

Remark 2. In direct comparison of the results of Theorem 1 and Corollary 3, the op-Cartesianity of op-Cartesian
liftings for the functor dom : PBh(C,M) ! C relied upon pullback-pushout decomposition, while for dom :
POh(C,M) ! C merely the pushout-pushout decomposition valid in any category was required. On the other hand,
the Cartesianity of Cartesian liftings for the functor dom : PBh(C,M) ! C relied upon the universal property of
FPCs, while it is a consequence of horizontal FPC decomposition for dom : FPCh(C,M) ! C. Since the requisite
properties of FPCs hold in any category that admits FPCs, it appears interesting to note that the strong requirements
necessary for dom : PBh(C,M)! C to carry bifibrational structures appear to be caused mainly by the Grothendieck
opfibration part of the structure.

2.4.2. Fibrational properties of the codomain functors
In contrast to the domain functors discussed in the previous section, only the codomain functor codom : PBh(C,M)!

C appears to admit some fibrational structure (see below), while codom : POh(C,M)! C and codom : FPCh(C,M)!
C fail to do so. (In view of the main theme of this paper, since none of the three variants of the codomain functors
will play a role throughout our constructions, this is not causing any technical problems, yet we found it interesting to
mention the following result here for symmetry nonetheless):

Theorem 2. Let C be a category with a stable system of monics and that has pullbacks alongM-morphisms. Then
codom : PBh(C,M)! C is a Grothendieck fibration.

Proof. Cartesian liftings are provided by taking pullbacks, while the Cartesianity of the liftings amounts to pullback-
pullback decomposition. ⇤

2.4.3. Fibrational properties of the target functors
As will be presented in this subsection, the target functors will have rather di↵erent fibrational structures:

• T : PBv(C,M)! C|M carries no fibrational structures.

• T : FPCv(C,M)! C|M carries a Grothendieck opfibration structure.

• T : POv(C,M)! C|M carries a multi-opfibration structure.

Theorem 3. Let C be a category with a stable system of monicsM, that has pullbacks alongM-morphisms, and that
has FPCs alongM-morphisms. Then the target functor T : FPCv(C,M)! C|M is a Grothendieck opfibration.
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Fibrational properties of the target functors

As the above results indicate, the domain functor dom : PBh(C,M) ! C is (for suitable categories C) a
Grothendieck bifibration, i.e., simultaneously a Grothendieck fibration and opfibration. An interesting variant of
this type of result –which moreover has important computational meaning in its own right– arises when considering
the domain functors from the categories POh and FPCh instead, which permits to state fibrational properties under
considerably weaker assumptions on the underlying categories C:

Corollary 3. Let C be a category with a stable system of monicsM.

(i) If C has pushouts alongM-morphisms, the functor dom : POh(C,M)! C is a Grothendieck opfibration.

(ii) If C has FPCs alongM-morphisms, the functor dom : FPCh(C,M)! C is a Grothendieck fibration.

Proof. It is a straightforward exercise to demonstrate that for case (i), pushouts alongM-morphisms provide the op-
Cartesian liftings (as was also the case for dom : PBh(C,M)! C), while the op-Cartesianity properties of the liftings
is realized in the form of pushout-pushout decomposition. For case (ii), FPCs alongM-morphisms provide the Carte-
sian liftings, where the Cartesianity properties of liftings are realized in the form of horizontal FPC decomposition.
⇤

Remark 2. In direct comparison of the results of Theorem 1 and Corollary 3, the op-Cartesianity of op-Cartesian
liftings for the functor dom : PBh(C,M) ! C relied upon pullback-pushout decomposition, while for dom :
POh(C,M) ! C merely the pushout-pushout decomposition valid in any category was required. On the other hand,
the Cartesianity of Cartesian liftings for the functor dom : PBh(C,M) ! C relied upon the universal property of
FPCs, while it is a consequence of horizontal FPC decomposition for dom : FPCh(C,M) ! C. Since the requisite
properties of FPCs hold in any category that admits FPCs, it appears interesting to note that the strong requirements
necessary for dom : PBh(C,M)! C to carry bifibrational structures appear to be caused mainly by the Grothendieck
opfibration part of the structure.

2.4.2. Fibrational properties of the codomain functors
In contrast to the domain functors discussed in the previous section, only the codomain functor codom : PBh(C,M)!

C appears to admit some fibrational structure (see below), while codom : POh(C,M)! C and codom : FPCh(C,M)!
C fail to do so. (In view of the main theme of this paper, since none of the three variants of the codomain functors
will play a role throughout our constructions, this is not causing any technical problems, yet we found it interesting to
mention the following result here for symmetry nonetheless):

Theorem 2. Let C be a category with a stable system of monics and that has pullbacks alongM-morphisms. Then
codom : PBh(C,M)! C is a Grothendieck fibration.

Proof. Cartesian liftings are provided by taking pullbacks, while the Cartesianity of the liftings amounts to pullback-
pullback decomposition. ⇤

2.4.3. Fibrational properties of the target functors
As will be presented in this subsection, the target functors will have rather di↵erent fibrational structures:

• T : PBv(C,M)! C|M carries no fibrational structures.

• T : FPCv(C,M)! C|M carries a Grothendieck opfibration structure.

• T : POv(C,M)! C|M carries a multi-opfibration structure.

Theorem 3. Let C be a category with a stable system of monicsM, that has pullbacks alongM-morphisms, and that
has FPCs alongM-morphisms. Then the target functor T : FPCv(C,M)! C|M is a Grothendieck opfibration.
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Figure 1: Boundary functors.

Following the convention of depicting morphisms ofM with the symbol ⇢, we depict in Figure 1 a square of type T
(withM-morphism drawn vertically), and moreover the action of four “boundary functors” that naturally arise from
the above definitions:

(a) The domain functor dom : Th(C,M)! C and the codomain functor codom : Th(C,M)! C.

(b) The source functor S : Tv(C,M) ! C|M and the target functor codom : Tv(C,M) ! C|M, where C|M has the
same objects as C, and as morphisms those ofM.

Lemma 4. The categories Th(C,M) and Tv(C,M) for T 2 {PB,PO,FPC} as introduced in Definition 7 are well-
defined, i.e., their composition operations are well-typed, associative and unital.

Proof. Well-definedness of the horizontal and vertical composition operations is a standard result for pullback and
pushout squares, while for final pullback complements (FPCs) this is a slight generalization of Lemma 17(5. & 6.):

• horizontal FPC composition: in sub-diagram (a) of (17) below, given two horizontally composed FPC squares,
an outer square which is a pullback, and morphisms X ! A and X ! C such that the diagram commutes, we
have to prove that there exists a unique morphism Y ! A0 such that the diagram commutes and such that the
square over Y ! A0 is a pullback.

1. By the universal property of FPCs, there exists a unique morphism Y � b! B0.

2. Take a pullback of Y � b! B0 � B, obtaining the span Y � P! B0 (where Y � P is inM by stability
ofM-morphisms under pullback). By the universal property of pullbacks, and since FPCs are pullbacks,
there exist unique morphisms X � x ! P and P � p ! A that make the diagram commute. Thus by the
universal property of FPCs, there exists a unique morphism Y � a! A0.

3. Finally, by pullback-pullback decomposition, the square over Y � a ! A0 is a pullback, which proves the
claim.

• vertical FPC composition: in sub-diagram (b) of (17) below, given two vertically composed FPC squares, an
outer square which is a pullback, and morphisms X ! A and X ! B such that the diagram commutes, we have
to prove that there exists a unique morphism Y ! A00 such that the diagram commutes and such that the square
over Y ! A00 is a pullback.

15



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

Multi-initial pushout complements



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

Multi-pushout complements



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

On the existence of multi-initial pushout complements

(i) has pullbacks alongM-morphisms, and

(ii) pushouts alongM-morphisms are stable underM-pullbacks.

Then C has multi-initial pushout complements (mIPCs) alongM-morphisms.

Proof. Let us construct the diagrams below:
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Here, the left diagram encodes the premise of the universal property of mIPCs. Taking a pullback as indicated to
obtain the right diagram (which is admissible since by assumption C has pullbacks alongM-morphisms), we obtain
morphisms f 0, ↵ and ↵0.

• By stability ofM-morphisms under pullback, ↵0 is inM. Since ↵00 = ↵0 � ↵ is inM as well, by the decompo-
sition property ofM-morphisms, we find that ↵ 2M.

• Since ↵ and � are inM, the right and left vertical squares are pullbacks. The back vertical square is a pullback,
since all squares of this form are such.

• By assumption, pushouts alongM-morphisms are stable underM-pullbacks, hence the top square is a pushout.
Thus by pushout-pushout decomposition, so is the front square.

We have thus exhibited an element of P( f , �). It is moreover clear from the construction that by the universal property
of pullbacks, if we take any other pullback A  � � Q � g0 ! B0 in order to obtain the decomposition into two
pushouts, there would exist an isomorphism P � '! Q with the required properties, which completes the proof. ⇤

After this somewhat lengthy excursion, a direct comparison of the notion of multi-opfibration (Definition 5) and
of multi-initial pushout complement yields the following important result:

Theorem 4. Let C be a category with a stable system of monicsM. Suppose that

(i) C has has pullbacks alongM-morphisms, and

(ii) pushouts alongM-morphisms are stable underM-pullbacks in C.

Then the target functor T : POv(C,M)! C|M is a multi-opfibration.

Proof. The multi-op-Cartesian liftings are provided by multi-initial pushout complements (mIPCs), whose existence
and uniqueness up to isomorphisms is guaranteed under the stated assumptions according to via Proposition 1. ⇤

2.4.4. Fibrational properties of the source functors
As will be presented in this subsection, the source functors will have rather di↵erent fibrational structures:

• S : PBv(C,M)! C|M carries no fibrational structures.

• S : POv(C,M)! C|M carries a Grothendieck opfibration structure.
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• Invoking vertical FPC-pullback decomposition, the square under P and the square over g0 are FPCs.

• By the universal property of FPCs, there exists thus a morphism A0 � ⌘ ! P, which by the universal property
of FPCs is an isomorphism.

Up until this point, we have proved that there exists a morphism ↵0 = �0 � ⌘, and that the square under ↵0 is an FPC.
It remains to prove uniqueness of ↵0. To this end, upon closer inspection of the second diagram in (25), since �0 is
inM and thus in particular a monomorphism, the right vertical square is a pullback, and thus by pullback-pullback
composition, the composite of the right and back vertical squares is a pullback. Therefore, we may identify ↵0 as the
morphism that according to the universal property of FPCs is guaranteed to exist (mediating before the aforementioned
pullback square and the FPC in the front vertical square), and that is moreover unique as per the universal property. ⇤

Remark 3. It is interesting to note that the proof strategy for op-Cartesianity would fail if we were to work in the
category PBv(C,M) rather than in FPCv(C,M), since the existence of the isomorphism A0�⌘! P and the uniqueness
of A0 � ↵0 ! A00 relied upon the universal property of FPCs (i.e., both of the FPC in the front and in the back of the
diagram). Indeed, if we were to consider the analogue of the diagrams in (25) in PBv(C,M), i.e., where the front
vertical square would be merely a pullback, taking a pullback as indicated would only yield that the squares under
and over P � p0 ! B0 are pullbacks. By the universal property of FPCs (of the back vertical FPC square, i.e., the one
of the lifting), we could only conclude that there exists a unique mediating arrow P � ⌘0 ! A0, but this arrow will in
general not be an isomorphism, hence we can indeed not prove op-Cartesianity of the liftings in PBv(C,M).

Turning our attention to the remaining variant of the target functor, i.e., to T : POv(C,M)! C|M, this will yield a
first example of a multi-opfibration. In order to formulate this result, we require the following multi-universal notion:

Definition 8. Let C be a category with a stable system of monicsM. For all composable sequences of morphisms of
the form A � f ! B⇢�! B0 (i.e., with � 2M), we define the following class:

P( f , �) := {(A⇢↵! A0, A0 � f 0 ! B0) 2 mor(C)2 | ↵ 2M ^ ( f 0, �) = PO(↵, f )} , (26)

More explicitly, the class P( f , �) consists of all composable sequences of morphisms A⇢↵! A0 � f 0 ! B0 such that
there exists a pushout square in C whose boundary is given (↵, f 0) and ( f , �). Then we refer to P( f , �) as the (M-)
multi-initial pushout complement (mIPC) of ( f , �) if the class satisfies the following universal property:
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We say that C has has multi-initial pushout complements (mIPCs) alongM-morphisms if C has an mIPC for every
composable sequence of morphisms of the form A � f ! B⇢�! B0.

Proposition 1. Let C be a category with a stable system of monicsM. Then if C
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(i) has pullbacks alongM-morphisms, and

(ii) pushouts alongM-morphisms are stable underM-pullbacks.

Then C has multi-initial pushout complements (mIPCs) alongM-morphisms.

Proof. Let us construct the diagrams below:
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Here, the left diagram encodes the premise of the universal property of mIPCs. Taking a pullback as indicated to
obtain the right diagram (which is admissible since by assumption C has pullbacks alongM-morphisms), we obtain
morphisms f 0, ↵ and ↵0.

• By stability ofM-morphisms under pullback, ↵0 is inM. Since ↵00 = ↵0 � ↵ is inM as well, by the decompo-
sition property ofM-morphisms, we find that ↵ 2M.

• Since ↵ and � are inM, the right and left vertical squares are pullbacks. The back vertical square is a pullback,
since all squares of this form are such.

• By assumption, pushouts alongM-morphisms are stable underM-pullbacks, hence the top square is a pushout.
Thus by pushout-pushout decomposition, so is the front square.

We have thus exhibited an element of P( f , �). It is moreover clear from the construction that by the universal property
of pullbacks, if we take any other pullback A  � � Q � g0 ! B0 in order to obtain the decomposition into two
pushouts, there would exist an isomorphism P � '! Q with the required properties, which completes the proof. ⇤

After this somewhat lengthy excursion, a direct comparison of the notion of multi-opfibration (Definition 5) and
of multi-initial pushout complement yields the following important result:

Theorem 4. Let C be a category with a stable system of monicsM. Suppose that

(i) C has has pullbacks alongM-morphisms, and

(ii) pushouts alongM-morphisms are stable underM-pullbacks in C.

Then the target functor T : POv(C,M)! C|M is a multi-opfibration.

Proof. The multi-op-Cartesian liftings are provided by multi-initial pushout complements (mIPCs), whose existence
and uniqueness up to isomorphisms is guaranteed under the stated assumptions according to via Proposition 1. ⇤

2.4.4. Fibrational properties of the source functors
As will be presented in this subsection, the source functors will have rather di↵erent fibrational structures:

• S : PBv(C,M)! C|M carries no fibrational structures.

• S : POv(C,M)! C|M carries a Grothendieck opfibration structure.
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Here, the left diagram encodes the premise of the universal property of mIPCs. Taking a pullback as indicated to
obtain the right diagram (which is admissible since by assumption C has pullbacks alongM-morphisms), we obtain
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• By stability ofM-morphisms under pullback, ↵0 is inM. Since ↵00 = ↵0 � ↵ is inM as well, by the decompo-
sition property ofM-morphisms, we find that ↵ 2M.

• Since ↵ and � are inM, the right and left vertical squares are pullbacks. The back vertical square is a pullback,
since all squares of this form are such.

• By assumption, pushouts alongM-morphisms are stable underM-pullbacks, hence the top square is a pushout.
Thus by pushout-pushout decomposition, so is the front square.

We have thus exhibited an element of P( f , �). It is moreover clear from the construction that by the universal property
of pullbacks, if we take any other pullback A  � � Q � g0 ! B0 in order to obtain the decomposition into two
pushouts, there would exist an isomorphism P � '! Q with the required properties, which completes the proof. ⇤

After this somewhat lengthy excursion, a direct comparison of the notion of multi-opfibration (Definition 5) and
of multi-initial pushout complement yields the following important result:

Theorem 4. Let C be a category with a stable system of monicsM. Suppose that

(i) C has has pullbacks alongM-morphisms, and

(ii) pushouts alongM-morphisms are stable underM-pullbacks in C.

Then the target functor T : POv(C,M)! C|M is a multi-opfibration.

Proof. The multi-op-Cartesian liftings are provided by multi-initial pushout complements (mIPCs), whose existence
and uniqueness up to isomorphisms is guaranteed under the stated assumptions according to via Proposition 1. ⇤

2.4.4. Fibrational properties of the source functors
As will be presented in this subsection, the source functors will have rather di↵erent fibrational structures:

• S : PBv(C,M)! C|M carries no fibrational structures.

• S : POv(C,M)! C|M carries a Grothendieck opfibration structure.
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• Invoking vertical FPC-pullback decomposition, the square under P and the square over g0 are FPCs.

• By the universal property of FPCs, there exists thus a morphism A0 � ⌘ ! P, which by the universal property
of FPCs is an isomorphism.

Up until this point, we have proved that there exists a morphism ↵0 = �0 � ⌘, and that the square under ↵0 is an FPC.
It remains to prove uniqueness of ↵0. To this end, upon closer inspection of the second diagram in (25), since �0 is
inM and thus in particular a monomorphism, the right vertical square is a pullback, and thus by pullback-pullback
composition, the composite of the right and back vertical squares is a pullback. Therefore, we may identify ↵0 as the
morphism that according to the universal property of FPCs is guaranteed to exist (mediating before the aforementioned
pullback square and the FPC in the front vertical square), and that is moreover unique as per the universal property. ⇤

Remark 3. It is interesting to note that the proof strategy for op-Cartesianity would fail if we were to work in the
category PBv(C,M) rather than in FPCv(C,M), since the existence of the isomorphism A0�⌘! P and the uniqueness
of A0 � ↵0 ! A00 relied upon the universal property of FPCs (i.e., both of the FPC in the front and in the back of the
diagram). Indeed, if we were to consider the analogue of the diagrams in (25) in PBv(C,M), i.e., where the front
vertical square would be merely a pullback, taking a pullback as indicated would only yield that the squares under
and over P � p0 ! B0 are pullbacks. By the universal property of FPCs (of the back vertical FPC square, i.e., the one
of the lifting), we could only conclude that there exists a unique mediating arrow P � ⌘0 ! A0, but this arrow will in
general not be an isomorphism, hence we can indeed not prove op-Cartesianity of the liftings in PBv(C,M).

Turning our attention to the remaining variant of the target functor, i.e., to T : POv(C,M)! C|M, this will yield a
first example of a multi-opfibration. In order to formulate this result, we require the following multi-universal notion:

Definition 8. Let C be a category with a stable system of monicsM. For all composable sequences of morphisms of
the form A � f ! B⇢�! B0 (i.e., with � 2M), we define the following class:

P( f , �) := {(A⇢↵! A0, A0 � f 0 ! B0) 2 mor(C)2 | ↵ 2M ^ ( f 0, �) = PO(↵, f )} , (26)

More explicitly, the class P( f , �) consists of all composable sequences of morphisms A⇢↵! A0 � f 0 ! B0 such that
there exists a pushout square in C whose boundary is given (↵, f 0) and ( f , �). Then we refer to P( f , �) as the (M-)
multi-initial pushout complement (mIPC) of ( f , �) if the class satisfies the following universal property:
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We say that C has has multi-initial pushout complements (mIPCs) alongM-morphisms if C has an mIPC for every
composable sequence of morphisms of the form A � f ! B⇢�! B0.

Proposition 1. Let C be a category with a stable system of monicsM. Then if C
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(i) has pullbacks alongM-morphisms, and

(ii) pushouts alongM-morphisms are stable underM-pullbacks.

Then C has multi-initial pushout complements (mIPCs) alongM-morphisms.

Proof. Let us construct the diagrams below:

A B A B

B0
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A B A B
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f
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�0

�00
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(28)

Here, the left diagram encodes the premise of the universal property of mIPCs. Taking a pullback as indicated to
obtain the right diagram (which is admissible since by assumption C has pullbacks alongM-morphisms), we obtain
morphisms f 0, ↵ and ↵0.

• By stability ofM-morphisms under pullback, ↵0 is inM. Since ↵00 = ↵0 � ↵ is inM as well, by the decompo-
sition property ofM-morphisms, we find that ↵ 2M.

• Since ↵ and � are inM, the right and left vertical squares are pullbacks. The back vertical square is a pullback,
since all squares of this form are such.

• By assumption, pushouts alongM-morphisms are stable underM-pullbacks, hence the top square is a pushout.
Thus by pushout-pushout decomposition, so is the front square.

We have thus exhibited an element of P( f , �). It is moreover clear from the construction that by the universal property
of pullbacks, if we take any other pullback A  � � Q � g0 ! B0 in order to obtain the decomposition into two
pushouts, there would exist an isomorphism P � '! Q with the required properties, which completes the proof. ⇤

After this somewhat lengthy excursion, a direct comparison of the notion of multi-opfibration (Definition 5) and
of multi-initial pushout complement yields the following important result:

Theorem 4. Let C be a category with a stable system of monicsM. Suppose that

(i) C has has pullbacks alongM-morphisms, and

(ii) pushouts alongM-morphisms are stable underM-pullbacks in C.

Then the target functor T : POv(C,M)! C|M is a multi-opfibration.

Proof. The multi-op-Cartesian liftings are provided by multi-initial pushout complements (mIPCs), whose existence
and uniqueness up to isomorphisms is guaranteed under the stated assumptions according to via Proposition 1. ⇤

2.4.4. Fibrational properties of the source functors
As will be presented in this subsection, the source functors will have rather di↵erent fibrational structures:

• S : PBv(C,M)! C|M carries no fibrational structures.

• S : POv(C,M)! C|M carries a Grothendieck opfibration structure.
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• Invoking vertical FPC-pullback decomposition, the square under P and the square over g0 are FPCs.
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The second line encodes that "( f ) is an op-Cartesian morphism, so we will refer to it as an op-Cartesian lifting of f .

It is important to emphasize that the above definition does not require that the op-Cartesian lifting "( f ) for a given f
is unique, but only so up to isomorphism, as the following standard result clarifies (and with an analogous result for
Cartesian liftings for Grothendieck fibrations):

Lemma 1. Let G : E ! B be a Grothendieck opfibration. Then for any b � f ! b0 in B and e 2 E with G(e) = b, if
e� "( f )! e0 and e� "̃( f )! ẽ0 are two op-Cartesian liftings of f , there exits a unique isomorphism e0 � �! ẽ0 such
that "̃( f ) = � � "( f ).

Proof. The statement follows by considering the special case of the second line of (4) where g is an identity morphism,
noting that by op-Cartesianity thus "( f ) factors ˜"( f ) uniquely and vice versa. ⇤

2.2. Multi-opfibrations
Definition 3. A functor M : E! B is a multi-opfibration if the following property holds:
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f
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^ 8k 2 J f ;e :
�9e0k � �k ! e00 : ↵ = �k � "k( f ) ^ M(�k) = g

�

) 9! e0j � �! e0k 2 iso(E) : "k( f ) = � � " j( f ) ^ M(�) = idb0

(5)

In words:

(i) For every b � f ! b0 in B and e 2 E with M(e) = b, there exists a (possibly empty) family J f ;e of multi-op-
Cartesian liftings e � " j( f )! e0f (with M(" j( f )) = f ).

(ii) Universal property of multi-opfibrations: Multi-op-Cartesianity of the liftings entails that for all e � ↵! e00 in
E and b0 � g ! b00 in B with M(↵) = g � f , there exists a j 2 J f ;e such that there exists a unique e0j � � j ! e00
with ↵ = � j � " j( f ) and M(� j) = g.

(iii) Essential uniqueness: If there exists some k 2 J f ;e such that e� "k( f )! e0k is another multi-op-Cartesian lifting
such that there exists a unique e0k � �k ! e00 with �k � "k( f ) = ↵ and M(�k) = g, then there exists a unique
isomorphism e0j � �! e0k such that "k( f ) = � � " j( f ) and M(�) = idb0 .

Corollary 1. Let M : E! B be a multi-opfibration. Then the following lifting property of isomorphisms is satisfied:
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 is a multi-opfibrationT : $%v(C, M) → C |M
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Figure 1: Boundary functors.

Following the convention of depicting morphisms ofM with the symbol ⇢, we depict in Figure 1 a square of type T
(withM-morphism drawn vertically), and moreover the action of four “boundary functors” that naturally arise from
the above definitions:

(a) The domain functor dom : Th(C,M)! C and the codomain functor codom : Th(C,M)! C.

(b) The source functor S : Tv(C,M) ! C|M and the target functor codom : Tv(C,M) ! C|M, where C|M has the
same objects as C, and as morphisms those ofM.

Lemma 4. The categories Th(C,M) and Tv(C,M) for T 2 {PB,PO,FPC} as introduced in Definition 7 are well-
defined, i.e., their composition operations are well-typed, associative and unital.

Proof. Well-definedness of the horizontal and vertical composition operations is a standard result for pullback and
pushout squares, while for final pullback complements (FPCs) this is a slight generalization of Lemma 17(5. & 6.):

• horizontal FPC composition: in sub-diagram (a) of (17) below, given two horizontally composed FPC squares,
an outer square which is a pullback, and morphisms X ! A and X ! C such that the diagram commutes, we
have to prove that there exists a unique morphism Y ! A0 such that the diagram commutes and such that the
square over Y ! A0 is a pullback.

1. By the universal property of FPCs, there exists a unique morphism Y � b! B0.

2. Take a pullback of Y � b! B0 � B, obtaining the span Y � P! B0 (where Y � P is inM by stability
ofM-morphisms under pullback). By the universal property of pullbacks, and since FPCs are pullbacks,
there exist unique morphisms X � x ! P and P � p ! A that make the diagram commute. Thus by the
universal property of FPCs, there exists a unique morphism Y � a! A0.

3. Finally, by pullback-pullback decomposition, the square over Y � a ! A0 is a pullback, which proves the
claim.

• vertical FPC composition: in sub-diagram (b) of (17) below, given two vertically composed FPC squares, an
outer square which is a pullback, and morphisms X ! A and X ! B such that the diagram commutes, we have
to prove that there exists a unique morphism Y ! A00 such that the diagram commutes and such that the square
over Y ! A00 is a pullback.
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(i) has pullbacks alongM-morphisms, and

(ii) pushouts alongM-morphisms are stable underM-pullbacks.

Then C has multi-initial pushout complements (mIPCs) alongM-morphisms.

Proof. Let us construct the diagrams below:
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Here, the left diagram encodes the premise of the universal property of mIPCs. Taking a pullback as indicated to
obtain the right diagram (which is admissible since by assumption C has pullbacks alongM-morphisms), we obtain
morphisms f 0, ↵ and ↵0.

• By stability ofM-morphisms under pullback, ↵0 is inM. Since ↵00 = ↵0 � ↵ is inM as well, by the decompo-
sition property ofM-morphisms, we find that ↵ 2M.

• Since ↵ and � are inM, the right and left vertical squares are pullbacks. The back vertical square is a pullback,
since all squares of this form are such.

• By assumption, pushouts alongM-morphisms are stable underM-pullbacks, hence the top square is a pushout.
Thus by pushout-pushout decomposition, so is the front square.

We have thus exhibited an element of P( f , �). It is moreover clear from the construction that by the universal property
of pullbacks, if we take any other pullback A  � � Q � g0 ! B0 in order to obtain the decomposition into two
pushouts, there would exist an isomorphism P � '! Q with the required properties, which completes the proof. ⇤

After this somewhat lengthy excursion, a direct comparison of the notion of multi-opfibration (Definition 5) and
of multi-initial pushout complement yields the following important result:

Theorem 4. Let C be a category with a stable system of monicsM. Suppose that

(i) C has has pullbacks alongM-morphisms, and

(ii) pushouts alongM-morphisms are stable underM-pullbacks in C.

Then the target functor T : POv(C,M)! C|M is a multi-opfibration.

Proof. The multi-op-Cartesian liftings are provided by multi-initial pushout complements (mIPCs), whose existence
and uniqueness up to isomorphisms is guaranteed under the stated assumptions according to via Proposition 1. ⇤

2.4.4. Fibrational properties of the source functors
As will be presented in this subsection, the source functors will have rather di↵erent fibrational structures:

• S : PBv(C,M)! C|M carries no fibrational structures.

• S : POv(C,M)! C|M carries a Grothendieck opfibration structure.
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Fibrational properties of the source functors
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(ii) pushouts alongM-morphisms are stable underM-pullbacks in C.

Then the target functor T : POv(C,M)! C|M is a multi-opfibration.

Proof. The multi-op-Cartesian liftings are provided by multi-initial pushout complements (mIPCs), whose existence
and uniqueness up to isomorphisms is guaranteed under the stated assumptions according to via Proposition 1. ⇤

2.4.4. Fibrational properties of the source functors
As will be presented in this subsection, the source functors will have rather di↵erent fibrational structures:

• S : PBv(C,M)! C|M carries no fibrational structures.

• S : POv(C,M)! C|M carries a Grothendieck opfibration structure.

22• S : FPCv(C,M)! C|M carries a residual multi-opfibration structure.

Theorem 5. Let C be a category with a stable system of monicsM, that has pushouts alongM-morphisms, and such
that M-morphisms are stable under pushout. Then the source functor S : POv(C,M) ! C|M is a Grothendieck
opfibration, with the op-Cartesian liftings provided by pushouts.

Proof. It su�ces to instantiate the definition of Grothendieck opfibration to the case at hand:
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Here, existence of the op-Cartesian liftings is provided by the assumption that C has pushouts alongM-morphisms,
while the op-Cartesianity of the liftings follows from the universal property of pushouts (yielding the existence of a
unique morphism B0 � �0 ! B00), pushout-pushout decomposition (which ensures the bottom square in the rightmost
diagram in (29) is a pushout), and finally from the assumption thatM-morphisms are stable under pushout (ensuring
that �0 2M, so that the pushout square over it indeed qualifies as a morphism in POv(C,M)). ⇤

Remark 4. It is worthwhile considering whether the above proof strategy for the Grothendieck opfibration structure
of S : POv(C,M) ! C|M could be adapted to the case of the source functor S : PBv(C,M) ! C|M; however, even
under the additional assumption that pushouts alongM-morphisms are pullbacks, we could not prove that �0 2 M
for the analogue of the last diagram in (29) where the outer square is merely a pullback (this was true for (29),
because here we could rely upon the assumedM-morphisms are stable under pushout). Nevertheless, it is interesting
to observe that S : PBv(C|M,M) ! C|M (i.e., restricting to pullback squares where all morphisms are inM) does
have the structure of a Grothendieck opfibration, with the op-Cartesian liftings given by pushouts, and op-Cartesianity
ensured if the pullback-pushout decomposition lemma holds (which requires certain additional assumptions on C).

Finally, let us consider the case of the source functor S : FPCv(C,M) ! C|M from the category of FPCs along
M-morphisms with vertical pasting. This case requires the introduction of a universal construction which, to the best
of our knowledge, is an original result of [1].

We first quote some standard concepts from category theory pertaining to factorization structures on morphisms,
which will be used in this paper for instance in the form of epi-M-factorizations, but also to demonstrate a certain
factorization structure on FPC squares (seen as morphisms in FPCv(C,M).

Definition 9 ([34], Def. 14.1). For a category C, let E and M be classes of morphisms. By convention, in commuta-
tive diagrams, let morphisms in E be depicted as ⇣, and morphisms in M by ⇢. Then (E,M) is called a factorization
structure for morphisms in C, and C is called (E,M)-structured i↵

(i) both E and M are closed under composition with isomorphisms,

(ii) C has (E,M)-factorizations of morphisms (i.e., for every morphism f in C, there exist m 2 M and e 2 E such
that f = m � e),

(iii) C has the unique (E,M)-diagonalization property:
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gf
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:

A B

C D

e

gf

m

9! d (30)

In words: for all commutative squares as in (30) above, where e 2 E and m 2 M, there exists a unique morphism
d (referred to as the diagonal) such that f = d � e and g = m � d.
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 is a Grothendieck opfibrationS : $%v(C, M) → C |M
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Figure 1: Boundary functors.

Following the convention of depicting morphisms ofM with the symbol ⇢, we depict in Figure 1 a square of type T
(withM-morphism drawn vertically), and moreover the action of four “boundary functors” that naturally arise from
the above definitions:

(a) The domain functor dom : Th(C,M)! C and the codomain functor codom : Th(C,M)! C.

(b) The source functor S : Tv(C,M) ! C|M and the target functor codom : Tv(C,M) ! C|M, where C|M has the
same objects as C, and as morphisms those ofM.

Lemma 4. The categories Th(C,M) and Tv(C,M) for T 2 {PB,PO,FPC} as introduced in Definition 7 are well-
defined, i.e., their composition operations are well-typed, associative and unital.

Proof. Well-definedness of the horizontal and vertical composition operations is a standard result for pullback and
pushout squares, while for final pullback complements (FPCs) this is a slight generalization of Lemma 17(5. & 6.):

• horizontal FPC composition: in sub-diagram (a) of (17) below, given two horizontally composed FPC squares,
an outer square which is a pullback, and morphisms X ! A and X ! C such that the diagram commutes, we
have to prove that there exists a unique morphism Y ! A0 such that the diagram commutes and such that the
square over Y ! A0 is a pullback.

1. By the universal property of FPCs, there exists a unique morphism Y � b! B0.

2. Take a pullback of Y � b! B0 � B, obtaining the span Y � P! B0 (where Y � P is inM by stability
ofM-morphisms under pullback). By the universal property of pullbacks, and since FPCs are pullbacks,
there exist unique morphisms X � x ! P and P � p ! A that make the diagram commute. Thus by the
universal property of FPCs, there exists a unique morphism Y � a! A0.

3. Finally, by pullback-pullback decomposition, the square over Y � a ! A0 is a pullback, which proves the
claim.

• vertical FPC composition: in sub-diagram (b) of (17) below, given two vertically composed FPC squares, an
outer square which is a pullback, and morphisms X ! A and X ! B such that the diagram commutes, we have
to prove that there exists a unique morphism Y ! A00 such that the diagram commutes and such that the square
over Y ! A00 is a pullback.

15
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Factorization structures

• S : FPCv(C,M)! C|M carries a residual multi-opfibration structure.

Theorem 5. Let C be a category with a stable system of monicsM, that has pushouts alongM-morphisms, and such
that M-morphisms are stable under pushout. Then the source functor S : POv(C,M) ! C|M is a Grothendieck
opfibration, with the op-Cartesian liftings provided by pushouts.

Proof. It su�ces to instantiate the definition of Grothendieck opfibration to the case at hand:
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Here, existence of the op-Cartesian liftings is provided by the assumption that C has pushouts alongM-morphisms,
while the op-Cartesianity of the liftings follows from the universal property of pushouts (yielding the existence of a
unique morphism B0 � �0 ! B00), pushout-pushout decomposition (which ensures the bottom square in the rightmost
diagram in (29) is a pushout), and finally from the assumption thatM-morphisms are stable under pushout (ensuring
that �0 2M, so that the pushout square over it indeed qualifies as a morphism in POv(C,M)). ⇤

Remark 4. It is worthwhile considering whether the above proof strategy for the Grothendieck opfibration structure
of S : POv(C,M) ! C|M could be adapted to the case of the source functor S : PBv(C,M) ! C|M; however, even
under the additional assumption that pushouts alongM-morphisms are pullbacks, we could not prove that �0 2 M
for the analogue of the last diagram in (29) where the outer square is merely a pullback (this was true for (29),
because here we could rely upon the assumedM-morphisms are stable under pushout). Nevertheless, it is interesting
to observe that S : PBv(C|M,M) ! C|M (i.e., restricting to pullback squares where all morphisms are inM) does
have the structure of a Grothendieck opfibration, with the op-Cartesian liftings given by pushouts, and op-Cartesianity
ensured if the pullback-pushout decomposition lemma holds (which requires certain additional assumptions on C).

Finally, let us consider the case of the source functor S : FPCv(C,M) ! C|M from the category of FPCs along
M-morphisms with vertical pasting. This case requires the introduction of a universal construction which, to the best
of our knowledge, is an original result of [1].

We first quote some standard concepts from category theory pertaining to factorization structures on morphisms,
which will be used in this paper for instance in the form of epi-M-factorizations, but also to demonstrate a certain
factorization structure on FPC squares (seen as morphisms in FPCv(C,M).

Definition 9 ([34], Def. 14.1). For a category C, let E and M be classes of morphisms. By convention, in commuta-
tive diagrams, let morphisms in E be depicted as ⇣, and morphisms in M by ⇢. Then (E,M) is called a factorization
structure for morphisms in C, and C is called (E,M)-structured i↵

(i) both E and M are closed under composition with isomorphisms,

(ii) C has (E,M)-factorizations of morphisms (i.e., for every morphism f in C, there exist m 2 M and e 2 E such
that f = m � e),

(iii) C has the unique (E,M)-diagonalization property:
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In words: for all commutative squares as in (30) above, where e 2 E and m 2 M, there exists a unique morphism
d (referred to as the diagonal) such that f = d � e and g = m � d.
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• By the universal property of pullbacks, there exists a unique morphism bp � q ! b0 that makes the diagram
commute; since (p � q) � p = p � (q � p) = p and p is unique, (p � q) = idb0 and q � p = idb, i.e., p is both a
section and a retraction, hence an isomorphism (and thus also q = p�1).

• Finally, by applying Corollary 1 for f = M(⇡) and g = idbp , we may demonstrate that ⇡ is an isomorphism,
hence indeed the claim that the square in E marked in blue is a pullback.

⇤

2.3. Residual multi-opfibrations
Definition 4. A functor R : E! B is a residual multi-opfibration if the following property holds:
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^ 8k 2 J f ;e :
�9 e0k � �k ! e00 : �k � ⇢k( f ) = ↵ ^ g = R(�k) � f?k

�

) 9! e0j � �! e0k 2 iso(E) : ⇢k( f ) = � � ⇢ j( f ) ^ � j = �k � � ^ f?k = R(�) � f? j

(11)

In words:

(i) For every b � f ! b0 in B and e 2 E with R(e) = b, there exists a (possibly empty) family J f ;e of residual
multi-op-Cartesian liftings e � ⇢ j( f )! e0j (with R(⇢ j( f )) = f? j � f , and with f? j referred to as a residue).

(ii) Universal property of residual multi-opfibrations: Residual multi-op-Cartesianity of the liftings entails that for
all e�↵! e00 in E and b0 �g! b00 in B with R(↵) = g� f , there exists a j 2 J f ;e such that there exists a unique
e0j � � j ! e00 with ↵ = � j � ⇢ j( f ) and g = R(� j) � f? j.

(iii) Essential uniqueness: If there exists some k 2 J f ;e such that e � ⇢k( f ) ! e0k is another residual multi-op-
Cartesian lifting, i.e., such that there exists a unique e0k � �k ! e00 with �k � ⇢k( f ) = ↵ and g = R(�k) � f?k, then
there exists a unique isomorphism e0j � �! e0k such that ⇢k( f ) = � � ⇢ j( f ), � j = �k � � and f?k = R(�) � f? j.

Remark 1. While the notion of multi-opfibration arose as a certain weakening of the notion of Grothendieck opfi-
bration, whereby op-Cartesian lifts for a given morphism are no longer required to exist, nor to be essentially unique,
the concept of residual multi-opfibrations is in a sense an even further weakening. The reason for introducing this
concept will become evident only when considering the salient examples of fibrational properties of final pullback
complement squares, and of sesqui-pushout direct derivations in the later parts of this paper.

Finally, we record the following technical result for residual multi-opfibrations, which will prove crucial in terms
of rewriting-theoretical applications (i.e., it plays a central role in the proof of the associativity theorem of Section 3.5):

12

Fibrational structures — “residual multi” variants
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• Since the front and bottom squares are FPCs and thus in particular pullbacks, and since the diagram commutes,
by pullback-pullback decomposition the diagonal square containing the morphisms �0 � ��1 and �0 � ��1 is a
pullback.

• Applying the two variants of vertical FPC-FPC decomposition, we may then conclude that the diagonal square
containing the morphisms �0 � ��1 and �0 � ��1 is the unique FPC square that simultaneously decomposes both
the back and the front FPCs, thus concluding the proof.

⇤

We refer the interested readers to Example 1 of Section 4.3.4 for an illustration of the practical meaning of the
(auto-augmented,inert) factorization of FPCs for the case of directed simple graphs, where it will be demonstrated
that in a certain sense the factorization provides a static analysis of classes of cloning with implicit deletions that are
modeled by FPCs.

Besides its quintessential role in factorizations of FPCs, the concept of FPC-pushout-augmentations (FPAs) is also
quintessential for the fibrational structure of the source functor S : FPCv(C,M)! C|M:

Theorem 7. Let C be a category with a stable system of monics M, that is (E, M)-structured, that has pullbacks,
pushouts and FPCs alongM-morphisms, such thatM-morphisms are stable under pushout, and such that pushouts
alongM-morphisms are stable underM-pullbacks. Then S : FPCv(C,M)! C|M is a residual multi-opfibration.

Proof. Let us first utilize the assumptions on the underlying category C in order to provide the following construction
on FPC squares that are morphisms in FPCv(C,M) as described in (38) below:

• Taking a pushout of the span A0  ↵ � A � f ! B, we obtain a cospan A0 � p! P � � B where � 2M by
stability ofM-morphisms under pushout, as well as a unique mediating morphism P � �0 ! B00.

• Applying E-M-factorization to �0, we obtain an E-morphism P � e ! E and anM-morphism E � m ! B00
such that �0 = e � m.

• Taking a pullback of the cospan A00 � f 00 ! B00  m � E, we obtain a span A00  ◆0 � I � i ! E, where by
stability ofM-morphisms under pullback we find that ◆0 2 M, and a unique mediating morphism A � ◆ ! I,
which by the decomposition property ofM-morphisms is also inM.

• Finally, applying pullback-pullback decomposition followed by vertical FPC-FPC decomposition, we may con-
clude that the bottom square is an FPC, and so is the vertical composite of the top and middle square. Moreover,
the middle square is a FPC-pushout-augmentation for the top (pushout) square.
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(38)

It is clear that the vertical decomposition of the original FPC square provided via the above construction is essentially
unique, in the sense that both the E-M-factorization as well as the pullback taken in the last two steps are unique
only up to isomorphisms.13 More explicitly, we have the following chain of arguments demonstrating the existence of
unique isomorphisms mediating between any two vertical FPC decompositions obtained via the above procedure:

13Note that also the pushout taken in the first step is unique only up to isomorphisms, yet the pushout itself is not retained as part of the data of
the vertical decomposition into two FPC squares, hence in this sense does not contribute to the e↵ective “degrees of freedom” of the construction.
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It is clear that the vertical decomposition of the original FPC square provided via the above construction is essentially
unique, in the sense that both the E-M-factorization as well as the pullback taken in the last two steps are unique
only up to isomorphisms.13 More explicitly, we have the following chain of arguments demonstrating the existence of
unique isomorphisms mediating between any two vertical FPC decompositions obtained via the above procedure:

13Note that also the pushout taken in the first step is unique only up to isomorphisms, yet the pushout itself is not retained as part of the data of
the vertical decomposition into two FPC squares, hence in this sense does not contribute to the e↵ective “degrees of freedom” of the construction.

27

```
§

 is a residual multi-opfibrationS : '$(v(C, M) → C |M



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

• Since the front and bottom squares are FPCs and thus in particular pullbacks, and since the diagram commutes,
by pullback-pullback decomposition the diagonal square containing the morphisms �0 � ��1 and �0 � ��1 is a
pullback.

• Applying the two variants of vertical FPC-FPC decomposition, we may then conclude that the diagonal square
containing the morphisms �0 � ��1 and �0 � ��1 is the unique FPC square that simultaneously decomposes both
the back and the front FPCs, thus concluding the proof.

⇤

We refer the interested readers to Example 1 of Section 4.3.4 for an illustration of the practical meaning of the
(auto-augmented,inert) factorization of FPCs for the case of directed simple graphs, where it will be demonstrated
that in a certain sense the factorization provides a static analysis of classes of cloning with implicit deletions that are
modeled by FPCs.

Besides its quintessential role in factorizations of FPCs, the concept of FPC-pushout-augmentations (FPAs) is also
quintessential for the fibrational structure of the source functor S : FPCv(C,M)! C|M:

Theorem 7. Let C be a category with a stable system of monics M, that is (E, M)-structured, that has pullbacks,
pushouts and FPCs alongM-morphisms, such thatM-morphisms are stable under pushout, and such that pushouts
alongM-morphisms are stable underM-pullbacks. Then S : FPCv(C,M)! C|M is a residual multi-opfibration.

Proof. Let us first utilize the assumptions on the underlying category C in order to provide the following construction
on FPC squares that are morphisms in FPCv(C,M) as described in (38) below:

• Taking a pushout of the span A0  ↵ � A � f ! B, we obtain a cospan A0 � p! P � � B where � 2M by
stability ofM-morphisms under pushout, as well as a unique mediating morphism P � �0 ! B00.

• Applying E-M-factorization to �0, we obtain an E-morphism P � e ! E and anM-morphism E � m ! B00
such that �0 = e � m.

• Taking a pullback of the cospan A00 � f 00 ! B00  m � E, we obtain a span A00  ◆0 � I � i ! E, where by
stability ofM-morphisms under pullback we find that ◆0 2 M, and a unique mediating morphism A � ◆ ! I,
which by the decomposition property ofM-morphisms is also inM.

• Finally, applying pullback-pullback decomposition followed by vertical FPC-FPC decomposition, we may con-
clude that the bottom square is an FPC, and so is the vertical composite of the top and middle square. Moreover,
the middle square is a FPC-pushout-augmentation for the top (pushout) square.
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It is clear that the vertical decomposition of the original FPC square provided via the above construction is essentially
unique, in the sense that both the E-M-factorization as well as the pullback taken in the last two steps are unique
only up to isomorphisms.13 More explicitly, we have the following chain of arguments demonstrating the existence of
unique isomorphisms mediating between any two vertical FPC decompositions obtained via the above procedure:

13Note that also the pushout taken in the first step is unique only up to isomorphisms, yet the pushout itself is not retained as part of the data of
the vertical decomposition into two FPC squares, hence in this sense does not contribute to the e↵ective “degrees of freedom” of the construction.
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• Since the front and bottom squares are FPCs and thus in particular pullbacks, and since the diagram commutes,
by pullback-pullback decomposition the diagonal square containing the morphisms �0 � ��1 and �0 � ��1 is a
pullback.

• Applying the two variants of vertical FPC-FPC decomposition, we may then conclude that the diagonal square
containing the morphisms �0 � ��1 and �0 � ��1 is the unique FPC square that simultaneously decomposes both
the back and the front FPCs, thus concluding the proof.

⇤

We refer the interested readers to Example 1 of Section 4.3.4 for an illustration of the practical meaning of the
(auto-augmented,inert) factorization of FPCs for the case of directed simple graphs, where it will be demonstrated
that in a certain sense the factorization provides a static analysis of classes of cloning with implicit deletions that are
modeled by FPCs.

Besides its quintessential role in factorizations of FPCs, the concept of FPC-pushout-augmentations (FPAs) is also
quintessential for the fibrational structure of the source functor S : FPCv(C,M)! C|M:

Theorem 7. Let C be a category with a stable system of monics M, that is (E, M)-structured, that has pullbacks,
pushouts and FPCs alongM-morphisms, such thatM-morphisms are stable under pushout, and such that pushouts
alongM-morphisms are stable underM-pullbacks. Then S : FPCv(C,M)! C|M is a residual multi-opfibration.

Proof. Let us first utilize the assumptions on the underlying category C in order to provide the following construction
on FPC squares that are morphisms in FPCv(C,M) as described in (38) below:

• Taking a pushout of the span A0  ↵ � A � f ! B, we obtain a cospan A0 � p! P � � B where � 2M by
stability ofM-morphisms under pushout, as well as a unique mediating morphism P � �0 ! B00.

• Applying E-M-factorization to �0, we obtain an E-morphism P � e ! E and anM-morphism E � m ! B00
such that �0 = e � m.

• Taking a pullback of the cospan A00 � f 00 ! B00  m � E, we obtain a span A00  ◆0 � I � i ! E, where by
stability ofM-morphisms under pullback we find that ◆0 2 M, and a unique mediating morphism A � ◆ ! I,
which by the decomposition property ofM-morphisms is also inM.

• Finally, applying pullback-pullback decomposition followed by vertical FPC-FPC decomposition, we may con-
clude that the bottom square is an FPC, and so is the vertical composite of the top and middle square. Moreover,
the middle square is a FPC-pushout-augmentation for the top (pushout) square.
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It is clear that the vertical decomposition of the original FPC square provided via the above construction is essentially
unique, in the sense that both the E-M-factorization as well as the pullback taken in the last two steps are unique
only up to isomorphisms.13 More explicitly, we have the following chain of arguments demonstrating the existence of
unique isomorphisms mediating between any two vertical FPC decompositions obtained via the above procedure:

13Note that also the pushout taken in the first step is unique only up to isomorphisms, yet the pushout itself is not retained as part of the data of
the vertical decomposition into two FPC squares, hence in this sense does not contribute to the e↵ective “degrees of freedom” of the construction.
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• Since the front and bottom squares are FPCs and thus in particular pullbacks, and since the diagram commutes,
by pullback-pullback decomposition the diagonal square containing the morphisms �0 � ��1 and �0 � ��1 is a
pullback.

• Applying the two variants of vertical FPC-FPC decomposition, we may then conclude that the diagonal square
containing the morphisms �0 � ��1 and �0 � ��1 is the unique FPC square that simultaneously decomposes both
the back and the front FPCs, thus concluding the proof.

⇤

We refer the interested readers to Example 1 of Section 4.3.4 for an illustration of the practical meaning of the
(auto-augmented,inert) factorization of FPCs for the case of directed simple graphs, where it will be demonstrated
that in a certain sense the factorization provides a static analysis of classes of cloning with implicit deletions that are
modeled by FPCs.

Besides its quintessential role in factorizations of FPCs, the concept of FPC-pushout-augmentations (FPAs) is also
quintessential for the fibrational structure of the source functor S : FPCv(C,M)! C|M:

Theorem 7. Let C be a category with a stable system of monics M, that is (E, M)-structured, that has pullbacks,
pushouts and FPCs alongM-morphisms, such thatM-morphisms are stable under pushout, and such that pushouts
alongM-morphisms are stable underM-pullbacks. Then S : FPCv(C,M)! C|M is a residual multi-opfibration.

Proof. Let us first utilize the assumptions on the underlying category C in order to provide the following construction
on FPC squares that are morphisms in FPCv(C,M) as described in (38) below:

• Taking a pushout of the span A0  ↵ � A � f ! B, we obtain a cospan A0 � p! P � � B where � 2M by
stability ofM-morphisms under pushout, as well as a unique mediating morphism P � �0 ! B00.

• Applying E-M-factorization to �0, we obtain an E-morphism P � e ! E and anM-morphism E � m ! B00
such that �0 = e � m.

• Taking a pullback of the cospan A00 � f 00 ! B00  m � E, we obtain a span A00  ◆0 � I � i ! E, where by
stability ofM-morphisms under pullback we find that ◆0 2 M, and a unique mediating morphism A � ◆ ! I,
which by the decomposition property ofM-morphisms is also inM.

• Finally, applying pullback-pullback decomposition followed by vertical FPC-FPC decomposition, we may con-
clude that the bottom square is an FPC, and so is the vertical composite of the top and middle square. Moreover,
the middle square is a FPC-pushout-augmentation for the top (pushout) square.
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It is clear that the vertical decomposition of the original FPC square provided via the above construction is essentially
unique, in the sense that both the E-M-factorization as well as the pullback taken in the last two steps are unique
only up to isomorphisms.13 More explicitly, we have the following chain of arguments demonstrating the existence of
unique isomorphisms mediating between any two vertical FPC decompositions obtained via the above procedure:

13Note that also the pushout taken in the first step is unique only up to isomorphisms, yet the pushout itself is not retained as part of the data of
the vertical decomposition into two FPC squares, hence in this sense does not contribute to the e↵ective “degrees of freedom” of the construction.
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such that �0 = e � m.

• Taking a pullback of the cospan A00 � f 00 ! B00  m � E, we obtain a span A00  ◆0 � I � i ! E, where by
stability ofM-morphisms under pullback we find that ◆0 2 M, and a unique mediating morphism A � ◆ ! I,
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It is clear that the vertical decomposition of the original FPC square provided via the above construction is essentially
unique, in the sense that both the E-M-factorization as well as the pullback taken in the last two steps are unique
only up to isomorphisms.13 More explicitly, we have the following chain of arguments demonstrating the existence of
unique isomorphisms mediating between any two vertical FPC decompositions obtained via the above procedure:

13Note that also the pushout taken in the first step is unique only up to isomorphisms, yet the pushout itself is not retained as part of the data of
the vertical decomposition into two FPC squares, hence in this sense does not contribute to the e↵ective “degrees of freedom” of the construction.
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• Since the front and bottom squares are FPCs and thus in particular pullbacks, and since the diagram commutes,
by pullback-pullback decomposition the diagonal square containing the morphisms �0 � ��1 and �0 � ��1 is a
pullback.

• Applying the two variants of vertical FPC-FPC decomposition, we may then conclude that the diagonal square
containing the morphisms �0 � ��1 and �0 � ��1 is the unique FPC square that simultaneously decomposes both
the back and the front FPCs, thus concluding the proof.

⇤

We refer the interested readers to Example 1 of Section 4.3.4 for an illustration of the practical meaning of the
(auto-augmented,inert) factorization of FPCs for the case of directed simple graphs, where it will be demonstrated
that in a certain sense the factorization provides a static analysis of classes of cloning with implicit deletions that are
modeled by FPCs.

Besides its quintessential role in factorizations of FPCs, the concept of FPC-pushout-augmentations (FPAs) is also
quintessential for the fibrational structure of the source functor S : FPCv(C,M)! C|M:

Theorem 7. Let C be a category with a stable system of monics M, that is (E, M)-structured, that has pullbacks,
pushouts and FPCs alongM-morphisms, such thatM-morphisms are stable under pushout, and such that pushouts
alongM-morphisms are stable underM-pullbacks. Then S : FPCv(C,M)! C|M is a residual multi-opfibration.

Proof. Let us first utilize the assumptions on the underlying category C in order to provide the following construction
on FPC squares that are morphisms in FPCv(C,M) as described in (38) below:

• Taking a pushout of the span A0  ↵ � A � f ! B, we obtain a cospan A0 � p! P � � B where � 2M by
stability ofM-morphisms under pushout, as well as a unique mediating morphism P � �0 ! B00.

• Applying E-M-factorization to �0, we obtain an E-morphism P � e ! E and anM-morphism E � m ! B00
such that �0 = e � m.

• Taking a pullback of the cospan A00 � f 00 ! B00  m � E, we obtain a span A00  ◆0 � I � i ! E, where by
stability ofM-morphisms under pullback we find that ◆0 2 M, and a unique mediating morphism A � ◆ ! I,
which by the decomposition property ofM-morphisms is also inM.

• Finally, applying pullback-pullback decomposition followed by vertical FPC-FPC decomposition, we may con-
clude that the bottom square is an FPC, and so is the vertical composite of the top and middle square. Moreover,
the middle square is a FPC-pushout-augmentation for the top (pushout) square.
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It is clear that the vertical decomposition of the original FPC square provided via the above construction is essentially
unique, in the sense that both the E-M-factorization as well as the pullback taken in the last two steps are unique
only up to isomorphisms.13 More explicitly, we have the following chain of arguments demonstrating the existence of
unique isomorphisms mediating between any two vertical FPC decompositions obtained via the above procedure:

13Note that also the pushout taken in the first step is unique only up to isomorphisms, yet the pushout itself is not retained as part of the data of
the vertical decomposition into two FPC squares, hence in this sense does not contribute to the e↵ective “degrees of freedom” of the construction.

27

• Since the front and bottom squares are FPCs and thus in particular pullbacks, and since the diagram commutes,
by pullback-pullback decomposition the diagonal square containing the morphisms �0 � ��1 and �0 � ��1 is a
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• Applying the two variants of vertical FPC-FPC decomposition, we may then conclude that the diagonal square
containing the morphisms �0 � ��1 and �0 � ��1 is the unique FPC square that simultaneously decomposes both
the back and the front FPCs, thus concluding the proof.

⇤

We refer the interested readers to Example 1 of Section 4.3.4 for an illustration of the practical meaning of the
(auto-augmented,inert) factorization of FPCs for the case of directed simple graphs, where it will be demonstrated
that in a certain sense the factorization provides a static analysis of classes of cloning with implicit deletions that are
modeled by FPCs.

Besides its quintessential role in factorizations of FPCs, the concept of FPC-pushout-augmentations (FPAs) is also
quintessential for the fibrational structure of the source functor S : FPCv(C,M)! C|M:

Theorem 7. Let C be a category with a stable system of monics M, that is (E, M)-structured, that has pullbacks,
pushouts and FPCs alongM-morphisms, such thatM-morphisms are stable under pushout, and such that pushouts
alongM-morphisms are stable underM-pullbacks. Then S : FPCv(C,M)! C|M is a residual multi-opfibration.

Proof. Let us first utilize the assumptions on the underlying category C in order to provide the following construction
on FPC squares that are morphisms in FPCv(C,M) as described in (38) below:

• Taking a pushout of the span A0  ↵ � A � f ! B, we obtain a cospan A0 � p! P � � B where � 2M by
stability ofM-morphisms under pushout, as well as a unique mediating morphism P � �0 ! B00.

• Applying E-M-factorization to �0, we obtain an E-morphism P � e ! E and anM-morphism E � m ! B00
such that �0 = e � m.

• Taking a pullback of the cospan A00 � f 00 ! B00  m � E, we obtain a span A00  ◆0 � I � i ! E, where by
stability ofM-morphisms under pullback we find that ◆0 2 M, and a unique mediating morphism A � ◆ ! I,
which by the decomposition property ofM-morphisms is also inM.

• Finally, applying pullback-pullback decomposition followed by vertical FPC-FPC decomposition, we may con-
clude that the bottom square is an FPC, and so is the vertical composite of the top and middle square. Moreover,
the middle square is a FPC-pushout-augmentation for the top (pushout) square.
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It is clear that the vertical decomposition of the original FPC square provided via the above construction is essentially
unique, in the sense that both the E-M-factorization as well as the pullback taken in the last two steps are unique
only up to isomorphisms.13 More explicitly, we have the following chain of arguments demonstrating the existence of
unique isomorphisms mediating between any two vertical FPC decompositions obtained via the above procedure:

13Note that also the pushout taken in the first step is unique only up to isomorphisms, yet the pushout itself is not retained as part of the data of
the vertical decomposition into two FPC squares, hence in this sense does not contribute to the e↵ective “degrees of freedom” of the construction.
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• Since the front and bottom squares are FPCs and thus in particular pullbacks, and since the diagram commutes,
by pullback-pullback decomposition the diagonal square containing the morphisms �0 � ��1 and �0 � ��1 is a
pullback.

• Applying the two variants of vertical FPC-FPC decomposition, we may then conclude that the diagonal square
containing the morphisms �0 � ��1 and �0 � ��1 is the unique FPC square that simultaneously decomposes both
the back and the front FPCs, thus concluding the proof.

⇤

We refer the interested readers to Example 1 of Section 4.3.4 for an illustration of the practical meaning of the
(auto-augmented,inert) factorization of FPCs for the case of directed simple graphs, where it will be demonstrated
that in a certain sense the factorization provides a static analysis of classes of cloning with implicit deletions that are
modeled by FPCs.

Besides its quintessential role in factorizations of FPCs, the concept of FPC-pushout-augmentations (FPAs) is also
quintessential for the fibrational structure of the source functor S : FPCv(C,M)! C|M:

Theorem 7. Let C be a category with a stable system of monics M, that is (E, M)-structured, that has pullbacks,
pushouts and FPCs alongM-morphisms, such thatM-morphisms are stable under pushout, and such that pushouts
alongM-morphisms are stable underM-pullbacks. Then S : FPCv(C,M)! C|M is a residual multi-opfibration.

Proof. Let us first utilize the assumptions on the underlying category C in order to provide the following construction
on FPC squares that are morphisms in FPCv(C,M) as described in (38) below:

• Taking a pushout of the span A0  ↵ � A � f ! B, we obtain a cospan A0 � p! P � � B where � 2M by
stability ofM-morphisms under pushout, as well as a unique mediating morphism P � �0 ! B00.

• Applying E-M-factorization to �0, we obtain an E-morphism P � e ! E and anM-morphism E � m ! B00
such that �0 = e � m.

• Taking a pullback of the cospan A00 � f 00 ! B00  m � E, we obtain a span A00  ◆0 � I � i ! E, where by
stability ofM-morphisms under pullback we find that ◆0 2 M, and a unique mediating morphism A � ◆ ! I,
which by the decomposition property ofM-morphisms is also inM.

• Finally, applying pullback-pullback decomposition followed by vertical FPC-FPC decomposition, we may con-
clude that the bottom square is an FPC, and so is the vertical composite of the top and middle square. Moreover,
the middle square is a FPC-pushout-augmentation for the top (pushout) square.
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It is clear that the vertical decomposition of the original FPC square provided via the above construction is essentially
unique, in the sense that both the E-M-factorization as well as the pullback taken in the last two steps are unique
only up to isomorphisms.13 More explicitly, we have the following chain of arguments demonstrating the existence of
unique isomorphisms mediating between any two vertical FPC decompositions obtained via the above procedure:

13Note that also the pushout taken in the first step is unique only up to isomorphisms, yet the pushout itself is not retained as part of the data of
the vertical decomposition into two FPC squares, hence in this sense does not contribute to the e↵ective “degrees of freedom” of the construction.
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• Since the front and bottom squares are FPCs and thus in particular pullbacks, and since the diagram commutes,
by pullback-pullback decomposition the diagonal square containing the morphisms �0 � ��1 and �0 � ��1 is a
pullback.

• Applying the two variants of vertical FPC-FPC decomposition, we may then conclude that the diagonal square
containing the morphisms �0 � ��1 and �0 � ��1 is the unique FPC square that simultaneously decomposes both
the back and the front FPCs, thus concluding the proof.

⇤

We refer the interested readers to Example 1 of Section 4.3.4 for an illustration of the practical meaning of the
(auto-augmented,inert) factorization of FPCs for the case of directed simple graphs, where it will be demonstrated
that in a certain sense the factorization provides a static analysis of classes of cloning with implicit deletions that are
modeled by FPCs.

Besides its quintessential role in factorizations of FPCs, the concept of FPC-pushout-augmentations (FPAs) is also
quintessential for the fibrational structure of the source functor S : FPCv(C,M)! C|M:

Theorem 7. Let C be a category with a stable system of monics M, that is (E, M)-structured, that has pullbacks,
pushouts and FPCs alongM-morphisms, such thatM-morphisms are stable under pushout, and such that pushouts
alongM-morphisms are stable underM-pullbacks. Then S : FPCv(C,M)! C|M is a residual multi-opfibration.

Proof. Let us first utilize the assumptions on the underlying category C in order to provide the following construction
on FPC squares that are morphisms in FPCv(C,M) as described in (38) below:

• Taking a pushout of the span A0  ↵ � A � f ! B, we obtain a cospan A0 � p! P � � B where � 2M by
stability ofM-morphisms under pushout, as well as a unique mediating morphism P � �0 ! B00.

• Applying E-M-factorization to �0, we obtain an E-morphism P � e ! E and anM-morphism E � m ! B00
such that �0 = e � m.

• Taking a pullback of the cospan A00 � f 00 ! B00  m � E, we obtain a span A00  ◆0 � I � i ! E, where by
stability ofM-morphisms under pullback we find that ◆0 2 M, and a unique mediating morphism A � ◆ ! I,
which by the decomposition property ofM-morphisms is also inM.

• Finally, applying pullback-pullback decomposition followed by vertical FPC-FPC decomposition, we may con-
clude that the bottom square is an FPC, and so is the vertical composite of the top and middle square. Moreover,
the middle square is a FPC-pushout-augmentation for the top (pushout) square.
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It is clear that the vertical decomposition of the original FPC square provided via the above construction is essentially
unique, in the sense that both the E-M-factorization as well as the pullback taken in the last two steps are unique
only up to isomorphisms.13 More explicitly, we have the following chain of arguments demonstrating the existence of
unique isomorphisms mediating between any two vertical FPC decompositions obtained via the above procedure:

13Note that also the pushout taken in the first step is unique only up to isomorphisms, yet the pushout itself is not retained as part of the data of
the vertical decomposition into two FPC squares, hence in this sense does not contribute to the e↵ective “degrees of freedom” of the construction.
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Examples of categorical rewriting semantics

In much of the traditional work on graph- and categorical rewriting theories [3], while it was appreciated early in
its development that SqPO-rewriting permits the cloning of subgraphs [20], and that both SqPO- and DPO-semantics
permit the fusion of subgraphs (i.e., via input-linear, but output-non-linear rules), the non-uniqueness of pushout
complements along non-monic morphisms for the DPO- and the lack of a concurrency theorem in the SqPO-case in
general has prohibited a detailed development of non-linear rewriting theories to date. Interestingly, the SqPO-type
concurrency theorem for linear rules as developed in [30] exhibits the same obstacle for the generalization to non-
linear rewriting as the DPO-type concurrency theorem, i.e., the non-uniqueness of certain pushout complements. Our
proof for non-linear rules identifies in addition a new and highly non-trivial “back-propagation e↵ect”, which will be
highlighted in Section 4.4.3 (cf. also Example 3 for an in-detail heuristic discussion of this e↵ect). It may be worth-
while emphasizing that there exists previous work that aimed at circumventing some of the technical obstacles of
non-linear rewriting either via specializing the semantics e.g. from double pushout to a version based upon so-called
minimal pushout complements [26], or from sesqui-pushout to reversible SqPO-semantics [23, 24] or other variants
such as AGREE-rewriting [25]. In contrast, we will in the following introduce the “true” extensions of both SqPO-
and DPO-rewriting to the non-linear setting, with our constructions based upon multi-sums, multi-IPCs and FPAs.

We focus here on the following eight variants of categorical rewriting semantics:

Definition 23. Let C be a category with a stable system of monicsM.

(i) A rule, denoted O( r � I, is a span r = (O or � Kr � ir ! I) in C. We refer to a rule as

• output-linear if or is inM,

• input-linear if ir is inM, and

• linear if both or and ir are inM.

We will also refer to arbitrary spans as generic rules.

(ii) In Double-Pushout (DPO) semantics, a direct derivation is defined as a commutative diagram as in (75) below,
where the vertical morphisms are inM, and where the square marked (†↵) is a pushout, while the square marked
(⇤↵) is an element of anM-multi-IPC (and thus in particular also a pushout). A category C is thus suitable for
DPO-semantics if it has multi-initial pushout complements (mIPCs) along M-morphisms, if it has pushouts
alongM-morphisms, and ifM-morphisms are stable under pushout.

(iii) In Sesqui-Pushout (SqPO) semantics, a direct derivation is defined as a commutative diagram as in (75) below,
where the vertical morphisms are inM, and where the square marked (†↵) is a pushout, while the square marked
(⇤↵) is a final pullback complement (FPC). A category C is thus suitable for SqPO-semantics if it has FPCs along
M-morphisms, if it has pushouts alongM-morphisms, and ifM-morphisms are stable under pushout.

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m(†↵) (⇤↵)↵ (75)

It is conventional to refer to theM-morphisms m and m⇤ as match and co-match, respectively. Finally, we will refer to
either of the two semantics as generic if no special restrictions are imposed upon the underlying rules, and as linear,
output-linear or input-linear if rules are restricted to being linear, output-linear or input-linear, respectively. We will
sometimes also use the term semi-linear as an abbreviation for “output-linear or input-linear”.

As discussed in further detail in Section 1.1, each of these eight types of semantics permits a di↵erent set of features,
e.g., for the rewriting of directed multigraphs, where the type of linearity of the rules entails whether or not fusing
or cloning of subgraphs are possible, and where the choice of SqPO- versus DPO-semantics yields a di↵erence also
in whether or not edges may be implicitly deleted (in addition to modifying the precise type of cloning semantics for
the non-input-linear variants of the semantics). It should also be noted that evidently there are many more kinds of
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In much of the traditional work on graph- and categorical rewriting theories [3], while it was appreciated early in
its development that SqPO-rewriting permits the cloning of subgraphs [20], and that both SqPO- and DPO-semantics
permit the fusion of subgraphs (i.e., via input-linear, but output-non-linear rules), the non-uniqueness of pushout
complements along non-monic morphisms for the DPO- and the lack of a concurrency theorem in the SqPO-case in
general has prohibited a detailed development of non-linear rewriting theories to date. Interestingly, the SqPO-type
concurrency theorem for linear rules as developed in [30] exhibits the same obstacle for the generalization to non-
linear rewriting as the DPO-type concurrency theorem, i.e., the non-uniqueness of certain pushout complements. Our
proof for non-linear rules identifies in addition a new and highly non-trivial “back-propagation e↵ect”, which will be
highlighted in Section 4.4.3 (cf. also Example 3 for an in-detail heuristic discussion of this e↵ect). It may be worth-
while emphasizing that there exists previous work that aimed at circumventing some of the technical obstacles of
non-linear rewriting either via specializing the semantics e.g. from double pushout to a version based upon so-called
minimal pushout complements [26], or from sesqui-pushout to reversible SqPO-semantics [23, 24] or other variants
such as AGREE-rewriting [25]. In contrast, we will in the following introduce the “true” extensions of both SqPO-
and DPO-rewriting to the non-linear setting, with our constructions based upon multi-sums, multi-IPCs and FPAs.

We focus here on the following eight variants of categorical rewriting semantics:

Definition 23. Let C be a category with a stable system of monicsM.

(i) A rule, denoted O( r � I, is a span r = (O or � Kr � ir ! I) in C. We refer to a rule as

• output-linear if or is inM,

• input-linear if ir is inM, and

• linear if both or and ir are inM.

We will also refer to arbitrary spans as generic rules.

(ii) In Double-Pushout (DPO) semantics, a direct derivation is defined as a commutative diagram as in (75) below,
where the vertical morphisms are inM, and where the square marked (†↵) is a pushout, while the square marked
(⇤↵) is an element of anM-multi-IPC (and thus in particular also a pushout). A category C is thus suitable for
DPO-semantics if it has multi-initial pushout complements (mIPCs) along M-morphisms, if it has pushouts
alongM-morphisms, and ifM-morphisms are stable under pushout.

(iii) In Sesqui-Pushout (SqPO) semantics, a direct derivation is defined as a commutative diagram as in (75) below,
where the vertical morphisms are inM, and where the square marked (†↵) is a pushout, while the square marked
(⇤↵) is a final pullback complement (FPC). A category C is thus suitable for SqPO-semantics if it has FPCs along
M-morphisms, if it has pushouts alongM-morphisms, and ifM-morphisms are stable under pushout.

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m(†↵) (⇤↵)↵ (75)

It is conventional to refer to theM-morphisms m and m⇤ as match and co-match, respectively. Finally, we will refer to
either of the two semantics as generic if no special restrictions are imposed upon the underlying rules, and as linear,
output-linear or input-linear if rules are restricted to being linear, output-linear or input-linear, respectively. We will
sometimes also use the term semi-linear as an abbreviation for “output-linear or input-linear”.

As discussed in further detail in Section 1.1, each of these eight types of semantics permits a di↵erent set of features,
e.g., for the rewriting of directed multigraphs, where the type of linearity of the rules entails whether or not fusing
or cloning of subgraphs are possible, and where the choice of SqPO- versus DPO-semantics yields a di↵erence also
in whether or not edges may be implicitly deleted (in addition to modifying the precise type of cloning semantics for
the non-input-linear variants of the semantics). It should also be noted that evidently there are many more kinds of
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Compositional rewriting double categories (crDCs)
3.3. Compositional rewriting double categories
Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}, Di morphisms are stable under pullback,
and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the
unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:

8
4 � ⇤

N ⌅

r1r2

r21

n m
r021

↵21

: 9
4 � ⇤

N • ⌅

r1r2

r21

n m
r021

m0

r01r02

↵21

↵2 ↵1
:

8
4 � ⇤

N ⌥ ⌅

r1r2

r21

n m
r021

m00

s01s02

↵21

�2 �1
: 9!• '�! ⌥ 2 iso(D0) : m00 = ' � m0

(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to
the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-
opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-
rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem
The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for
compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the
morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

· · · ·

· · · · ·

· · ·

· · ·

· ·

r1

?

r2

r02 r01

r02⇧r01

1:1

r2 r1

r0021

r002 r001

�2 �1

�021

↵2 ↵1 (44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),
there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the
direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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Existence of horizontal and vertical units

categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(81)

Proof. The only non-trivial statement to prove is that the diagrams in (81) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (81) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (81) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.

Proof. Since the crDCs for the di↵erent semantics are obtained via suitable restrictions of the double category
Span(C), the operation ⇧h is for all situations induced via span composition of the horizontal morphisms:

· · · · · ·

⇧h :=

· · · · · ·

r2

o n

r02

r1

n m

r01

o

r021

r21

m↵2 ↵1 ↵21 (82a)

·

· · · ·

·

· · ⌃ · ·

⌥

o

or2

k↵2

or02

ir2

ir02

n

or1

k↵1

or01

ir1

ir01

m

(⇤↵2 ) (†↵1 )

p

p1p2

p02 p01

PB

PB(†p) (⇤p)

or21

or021

ir021

ir21 (⇤↵1 )(†↵2 )

(⇤↵21 )(†↵21 )

(82b)

To begin with, the definition of ⇧h via taking pullbacks requires that the underlying category has pullbacks for the case
of generic rules, while for all variants of linearity it su�ces that C has pullbacks along M-morphisms. Moreover,
since by assumption M is a stable system of monics, M-morphisms are stable under pullback, hence the types of
the composite spans are indeed compatible with the types specified in generic, output-linear, input-linear or linear
rewriting semantics, respectively.

Next, the universal property of pullbacks entails the existence of a unique morphism ⌃ � p ! ⌥ that makes the
diagram in (82b). By pullback-pullback decomposition, the front left and right vertical squares marked (†p) and (⇤p)
in (82b) are pullbacks.

It remains to demonstrate that the squares marked (†p) and (⇤p) in (82b) are not only pullbacks, but indeed of the
correct type (i.e., pushouts or FPCs, respectively) as required for the chosen rewriting semantics.
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Horizontal composition
Proof. Since the crDCs for the di↵erent semantics are obtained via suitable restrictions of the double category
Span(C), the operation ⇧h is for all situations induced via span composition of the horizontal morphisms:

· · · · · ·

⇧h :=

· · · · · ·

r2

o n

r02

r1

n m

r01

o

r021

r21

m↵2 ↵1 ↵21 (78a)

·

· · · ·

·

· · ⌃ · ·

⌥

o

or2

k↵2

or02

ir2

ir02

n

or1

k↵1

or01

ir1

ir01

m

(⇤↵2 ) (†↵1 )

p

p1p2

p02 p01

PB

PB(†p) (⇤p)

or21

or021

ir021

ir21 (⇤↵1 )(†↵2 )

(⇤↵21 )(†↵21 )

(78b)

To begin with, the definition of ⇧h via taking pullbacks requires that the underlying category has pullbacks for the case
of generic rules, while for all variants of linearity it su�ces that C has pullbacks along M-morphisms. Moreover,
since by assumption M is a stable system of monics, M-morphisms are stable under pullback, hence the types of
the composite spans are indeed compatible with the types specified in generic, output-linear, input-linear or linear
rewriting semantics, respectively.

Next, the universal property of pullbacks entails the existence of a unique morphism ⌃ � p ! ⌥ that makes the
diagram in (78b). By pullback-pullback decomposition, the front left and right vertical squares marked (†p) and (⇤p)
in (78b) are pullbacks.

It remains to demonstrate that the squares marked (†p) and (⇤p) in (78b) are not only pullbacks, but indeed of the
correct type (i.e., pushouts or FPCs, respectively) as required for the chosen rewriting semantics.

(i) For the square marked (†p), since in all eight types of semantics according to Definition 23 the square marked
(†↵1 ) is a pushout, we have to require the appropriate notion of stability of this type of pushout under pullbacks
(compare Table 3). More precisely, the distinction depends on the character of the horizontal morphisms in the
pushout square (†↵1 ), and in the nature of the morphisms in the pullback squares over (†↵1 ) (i.e., ir2 , ir02 , p1 and
p01), which depending on the rewriting semantics are either generic morphisms orM-morphisms:

• For generic semantics, (†p) is a pushout along anM-morphism, and the morphisms in the pullback squares
over (†↵1 ) are generic morphisms, hence we need to require C to satisfy that pushouts alongM-morphisms
are stable under pullbacks (i.e., axiom (L-iii-a) of the definition of adhesive HLR categories).
• For output-linear semantics, (†p) is a pushout of a span of M-morphisms, and the morphisms in the

pullback squares over (†↵1 ) are generic morphisms, hence we need to require C to satisfy axiom (H-iii-a)
of the definition of horizontal weak adhesive HLR categories.
• For input-linear semantics, (†p) is a pushout along anM-morphism, and the morphisms in the pullback

squares over (†↵1 ) areM-morphisms, hence we need to require C to satisfy axiom (V-iii-a) of the definition
of vertical weak adhesive HLR categories.
• For linear semantics, (†p) is a pushout of a span of M-morphisms, and the morphisms in the pullback

squares over (†↵1 ) areM-morphisms, hence we need to require C to satisfy axiom (V-iii-a) of the definition
of vertical weak adhesive HLR categories.20

20Coincidentally, it would also be su�cient for C to satisfy axiom (H-iii-a) of the definition of horizontal weak adhesive HLR categories;
however, it will become evident in the following that axiom (V-iii-a) is in fact required for other properties of crDCs to be satisfied (cf. Table 3).
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Horizontal composition
Proof. Since the crDCs for the di↵erent semantics are obtained via suitable restrictions of the double category
Span(C), the operation ⇧h is for all situations induced via span composition of the horizontal morphisms:

· · · · · ·

⇧h :=

· · · · · ·

r2

o n

r02

r1

n m

r01

o

r021

r21

m↵2 ↵1 ↵21 (78a)

·

· · · ·

·

· · ⌃ · ·

⌥

o

or2

k↵2

or02

ir2

ir02

n

or1

k↵1

or01

ir1

ir01

m

(⇤↵2 ) (†↵1 )

p

p1p2

p02 p01

PB

PB(†p) (⇤p)

or21

or021

ir021

ir21 (⇤↵1 )(†↵2 )

(⇤↵21 )(†↵21 )

(78b)

To begin with, the definition of ⇧h via taking pullbacks requires that the underlying category has pullbacks for the case
of generic rules, while for all variants of linearity it su�ces that C has pullbacks along M-morphisms. Moreover,
since by assumption M is a stable system of monics, M-morphisms are stable under pullback, hence the types of
the composite spans are indeed compatible with the types specified in generic, output-linear, input-linear or linear
rewriting semantics, respectively.

Next, the universal property of pullbacks entails the existence of a unique morphism ⌃ � p ! ⌥ that makes the
diagram in (78b). By pullback-pullback decomposition, the front left and right vertical squares marked (†p) and (⇤p)
in (78b) are pullbacks.

It remains to demonstrate that the squares marked (†p) and (⇤p) in (78b) are not only pullbacks, but indeed of the
correct type (i.e., pushouts or FPCs, respectively) as required for the chosen rewriting semantics.

(i) For the square marked (†p), since in all eight types of semantics according to Definition 23 the square marked
(†↵1 ) is a pushout, we have to require the appropriate notion of stability of this type of pushout under pullbacks
(compare Table 3). More precisely, the distinction depends on the character of the horizontal morphisms in the
pushout square (†↵1 ), and in the nature of the morphisms in the pullback squares over (†↵1 ) (i.e., ir2 , ir02 , p1 and
p01), which depending on the rewriting semantics are either generic morphisms orM-morphisms:

• For generic semantics, (†p) is a pushout along anM-morphism, and the morphisms in the pullback squares
over (†↵1 ) are generic morphisms, hence we need to require C to satisfy that pushouts alongM-morphisms
are stable under pullbacks (i.e., axiom (L-iii-a) of the definition of adhesive HLR categories).
• For output-linear semantics, (†p) is a pushout of a span of M-morphisms, and the morphisms in the

pullback squares over (†↵1 ) are generic morphisms, hence we need to require C to satisfy axiom (H-iii-a)
of the definition of horizontal weak adhesive HLR categories.
• For input-linear semantics, (†p) is a pushout along anM-morphism, and the morphisms in the pullback

squares over (†↵1 ) areM-morphisms, hence we need to require C to satisfy axiom (V-iii-a) of the definition
of vertical weak adhesive HLR categories.
• For linear semantics, (†p) is a pushout of a span of M-morphisms, and the morphisms in the pullback

squares over (†↵1 ) areM-morphisms, hence we need to require C to satisfy axiom (V-iii-a) of the definition
of vertical weak adhesive HLR categories.20

20Coincidentally, it would also be su�cient for C to satisfy axiom (H-iii-a) of the definition of horizontal weak adhesive HLR categories;
however, it will become evident in the following that axiom (V-iii-a) is in fact required for other properties of crDCs to be satisfied (cf. Table 3).
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Horizontal decomposition

(ii) For the square marked (⇤↵2 ) in (78b), since this square is an final pullback complement (FPC) for sesqui-pushout
semantics, and under the condition that C has pullbacks (which is also one of the necessary assumptions for the
construction of FPCs via anM-partial map classifier, cf. Theorem 14), we obtain that the square marked (⇤p) is
an FPC by stability of FPCs under pullbacks. For double-pushout semantics, we may repeat the analysis of the
previous step (i) to demonstrate that since the square marked (⇤↵2 ) is a pushout for this semantics, under suitable
conditions on C the square marked (⇤p) is a pushout as well. In particular, we find for the output-linear and
input-linear variants of DPO-semantics that C has to satisfy axiom (W-iii-a) of the definition of weak adhesive
HLR categories, i.e., both of axioms (V-iii-a) and (H-iii-a).

Finally, by pushout composition and horizontal FPC composition, respectively, one may demonstrate that the hori-
zontal composite of (†↵2 ) and (†p) is a pushout, while (⇤p) and (⇤↵1 ) compose into a pushout for DPO-semantics, and
into an FPC for SqPO-semantics, which concludes the proof. ⇤

Remark 14. In earlier work on the linear variant of sesqui-pushout semantics [37, 30], instead of requiring that C has
pullbacks, an alternative argument was utilized in order to prove that square (⇤p) in (78b) is an FPC: after completing
step (i) in order to prove that (†p) is a pushout as above, and utilizing that pushouts ofM-spans are also FPCs (compare
Proposition 7), the pushout squares (†↵1 ) and (†p) are FPCs. Thus by horizontal FPC composition the composite of
squares (⇤↵2 ) and (†p) is an FPC, hence applying horizontal FPC decomposition, one may demonstrate that (⇤p) is an
FPC. However, there exists to the best of our knowledge no example of a category that has FPCs alongM-morphisms
where FPCs are not constructed via anM-partial map classifier as in Theorem 14, and since the latter theorem requires
that the category has pullbacks, it appears to be more e�cient to apply stability of FPCs under pullbacks in order to
prove that (⇤p) is an FPC.

4.4.2. Properties specific to compositional rewriting double categories
Having established the conditions on the underlying category under which direct derivations of one of the eight

semantics of Definition 23 give rise to a double category, it remains to determine whether additional conditions are
required such that these double categories indeed qualify as compositional rewriting double categories. The results of
this part of the derivation are summarized in Table 3.

Proposition 9. Let C be a category suitable for one of the rewriting semantics of Definition 23, and such that C
also satisfies the relevant additional assumptions stated in Table 3. Then the resulting double category satisfies the
horizontal decomposition property.

Proof. The claim concerns diagrams of the form below, where (†↵21 ) is a pushout and (⇤↵21 ) is a pushout for DPO-
semantics and an FPC for SqPO-semantics:

·

· · · ·

· ⌃ ·

⌥

o

or2

ir2
or1

ir1

m

p

p1p2

PB

or21

or021

ir021

ir21

(⇤↵21 )(†↵21 )

(79)

We have to prove that for each of the semantics of Definition 23, one may obtain essentially uniquely a horizontal
composition of direct derivations. To this end, consider first the case of DPO-semantics, for which we transform the
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Horizontal decomposition — double-pushout semantics

Double-Pushout semantics Sesqui-Pushout semantics

Property linear semi-
linear generic linear output-

linear
input-
linear generic

D0 has
multi-sums X (Lemma 8)

9 horizon-
tal/vertical

units
X (Corollary 7)

vertical
composition X (by pushout-pushout composition) X (by PO-PO- and vertical FPC composition)

horizontal
composition

(Proposition 8)

C has pullbacks
alongM-morphisms

C has
pullbacks C has pullbacks

^ (V-iii-a) ^
(W-iii-a) ^ (L-iii-a) ^ (V-iii-a) ^ (H-iii-a) ^ (V-iii-a) ^ (L-iii-a)

horizontal
decomposition
(Proposition 9)

C has pushouts alongM-morphisms C has pullbacks ^ has pushouts and FPCs
alongM-morphisms

^ has pullbacks
alongM-morphisms

^ (V-iii-b)

^ has
pullbacks
^ (L-iii-b)

^ (V-iii-a)
_ (H-iii-a) ^ (H-iii-a) ^ (V-iii-a) ^ (L-iii-a)

D1 has pullbacks
(Proposition 10) (V-iii-a)

S is a
multi-opfibration

(Theorem 15)

C is a vertical weak adhesive
HLR category

C is vertical weak adhesive HLR and has
FPCs alongM-morphisms

T is a residual
multi-opfibration

(Theorem 15)

C is a vertical weak adhesive
HLR category

C is vertical weak adhesive HLR and has
FPCs alongM-morphisms

Table 3: Requirements on the underlying category for giving rise to compositional rewriting semantics of the various kinds. For all cases, we
minimally assume that C has a stable system of monics, with respect to which C is finitary, with respect to which the variants of adhesivity
properties are required to hold, and such that D0 := C|M has pullbacks. The latter is equivalent to requiring that C has pullbacks of spans of
M-morphisms, which is true for all of the listed adhesivity properties. We moreover use the abbreviation (W-iii) to denote (V-iii) ^ (H-iii).

diagram of (79) into the diagram below:

·

· · · ·

·

· · ⌃ · ·

⌥

o

or2

k↵2

9!or02

ir2

9!ir02

n

or1

k↵1

or01

ir1

9!ir01

m

(⇤↵2 ) (†↵1 )

p

p1p2

p02 p01

PB

(†p) (⇤p)

or21

or021

ir021

ir21 (⇤↵1 )(†↵2 )

(?) (⇤↵21 )(†↵21 )

(80)

• Take pushouts to obtain the squares marked (†p) and (⇤p), which by the universal property of pushouts entails
that there exist unique morphisms or02 and ir01 . Moreover, by pushout-pushout decomposition, the squares marked
(†↵2 ) and (⇤↵1 ) are pushouts.
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Horizontal decomposition — double-pushout semantics

Double-Pushout semantics Sesqui-Pushout semantics

Property linear semi-
linear generic linear output-

linear
input-
linear generic

D0 has
multi-sums X (Lemma 8)

9 horizon-
tal/vertical

units
X (Corollary 7)

vertical
composition X (by pushout-pushout composition) X (by PO-PO- and vertical FPC composition)

horizontal
composition

(Proposition 8)

C has pullbacks
alongM-morphisms

C has
pullbacks C has pullbacks

^ (V-iii-a) ^
(W-iii-a) ^ (L-iii-a) ^ (V-iii-a) ^ (H-iii-a) ^ (V-iii-a) ^ (L-iii-a)

horizontal
decomposition
(Proposition 9)

C has pushouts alongM-morphisms C has pullbacks ^ has pushouts and FPCs
alongM-morphisms

^ has pullbacks
alongM-morphisms

^ (V-iii-b)

^ has
pullbacks
^ (L-iii-b)

^ (V-iii-a)
_ (H-iii-a) ^ (H-iii-a) ^ (V-iii-a) ^ (L-iii-a)

D1 has pullbacks
(Proposition 10) (V-iii-a)

S is a
multi-opfibration

(Theorem 15)

C is a vertical weak adhesive
HLR category

C is vertical weak adhesive HLR and has
FPCs alongM-morphisms

T is a residual
multi-opfibration

(Theorem 15)

C is a vertical weak adhesive
HLR category

C is vertical weak adhesive HLR and has
FPCs alongM-morphisms

Table 3: Requirements on the underlying category for giving rise to compositional rewriting semantics of the various kinds. For all cases, we
minimally assume that C has a stable system of monics, with respect to which C is finitary, with respect to which the variants of adhesivity
properties are required to hold, and such that D0 := C|M has pullbacks. The latter is equivalent to requiring that C has pullbacks of spans of
M-morphisms, which is true for all of the listed adhesivity properties. We moreover use the abbreviation (W-iii) to denote (V-iii) ^ (H-iii).

diagram of (79) into the diagram below:

·

· · · ·

·

· · ⌃ · ·

⌥

o

or2

k↵2

9!or02

ir2

9!ir02

n

or1

k↵1

or01

ir1

9!ir01

m

(⇤↵2 ) (†↵1 )

p

p1p2

p02 p01

PB

(†p) (⇤p)

or21

or021

ir021

ir21 (⇤↵1 )(†↵2 )

(?) (⇤↵21 )(†↵21 )

(80)

• Take pushouts to obtain the squares marked (†p) and (⇤p), which by the universal property of pushouts entails
that there exist unique morphisms or02 and ir01 . Moreover, by pushout-pushout decomposition, the squares marked
(†↵2 ) and (⇤↵1 ) are pushouts.
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Horizontal decomposition — sesqui-pushout semantics

• Take another pushout to obtain the square21 marked (†↵1 ), which by the universal property of pushouts entails
that there exists a unique morphism ir02 . Moreover, by pushout-pushout decomposition, the square marked (⇤↵2 )
is a pushout.

• It then remains to invoke the version of the van Kampen square property applicable to the given variant of
DPO-semantics (i.e., axiom (L-iii-b) for the generic and axiom (V-iii-b) for the other variants, cf. Table 3) in
order to demonstrate that the bottom square marked (?) is indeed a pullback.

For the case of SqPO-semantics, we transform the diagram in (79) as follows:

·

· · · ·

·

· · ⌃ · ·

⌥

o

or2

k↵2

9!or02

ir2

ir02

n

or1

k↵1

or01

ir1

ir01

m

(⇤↵2 ) (†↵1 )

p

p1p2

9!p02 9!p01

PB

(?)(†p) (⇤p)

or21

or021

ir021

ir21 (⇤↵1 )(†↵2 )

(⇤↵21 )(†↵21 )

(81)

• Take an FPC to obtain the square marked (⇤↵1 ), which by the universal property of FPCs entails the existence
of a unique morphism p01, and thus by horizontal FPC decomposition that the square marked (⇤p) is an FPC.

• Take a pushout to obtain the square marked (†↵1 ), and an FPC to obtain the square marked (⇤↵2 ), which by the
universal property of FPCs yields also a unique morphism p02, and thus by pullback-pullback decomposition,
the square marked (†p) is a pullback.

• For the case of generic SqPO-semantics, the claim follows by invoking the Beck-Chevalley-Condition (BCC-1)
of Theorem 1, which allows us to conclude that the square marked (†p) is an FPC, and the bottom square marked
(?) is a pullback.

• For the other types of SqPO-semantics, we may develop more general variants of the Beck-Chevalley-Condition
(BCC-1) by suitably adapting the proof strategy of Theorem 1. To this end, consider the diagrammatic statement
presented in (82) below (which is a 3D-rotated and relabeled version of the statement in (21) in order to facilitate
the comparison to the diagram in (81)). In all three cases, the proof strategy consists in (i) taking a pullback to
obtain the second diagram in (82) (where by the universal property of pullbacks entails that there exist unique
arrows ⌃ � q ! ⌅ and ⌥ � q0 ! ⌅); (ii) using pullback-pullback decomposition to prove that all squares
of the interior commutative cube are pullbacks; (iii) invoking a suitable variant of stability of pushouts under
pullbacks to show that the front left inner vertical square is a pushout; and finally (iv) to apply stability of FPCs
under pullbacks in order to demonstrate that the front right inner vertical square is an FPC, such that by the
universal property of FPCs the morphism ⌃ � q ! ⌅ is an isomorphism. It thus remains to clarify the variant
of stability property of pushouts necessary for each kind of semantics:

– For output-linear SqPO-semantics, all morphisms of the back right vertical square are guaranteed to be
M-morphisms, hence the claim follows if C satisfies axiom (H-iii-a).

– For input-linear SqPO-semantics, the morphisms ir2 , ir02 , p1, and (by stability of M-morphisms under
pullback) p001 are guaranteed to beM-morphisms, hence the claim follows if C satisfies axiom (V-iii-a).

– Since linear SqPO-semantics is a special case both of output-linear and input-linear SqPO-semantics, the
claim follows if C satisfies either (H-iii-a) or (V-iii-a).

21Evidently, we could have equivalently obtained the square marked (⇤↵2 ) first by taking a pushout.
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Horizontal decomposition — sesqui-pushout semantics

• Take another pushout to obtain the square21 marked (†↵1 ), which by the universal property of pushouts entails
that there exists a unique morphism ir02 . Moreover, by pushout-pushout decomposition, the square marked (⇤↵2 )
is a pushout.

• It then remains to invoke the version of the van Kampen square property applicable to the given variant of
DPO-semantics (i.e., axiom (L-iii-b) for the generic and axiom (V-iii-b) for the other variants, cf. Table 3) in
order to demonstrate that the bottom square marked (?) is indeed a pullback.

For the case of SqPO-semantics, we transform the diagram in (79) as follows:

·

· · · ·

·

· · ⌃ · ·

⌥

o

or2

k↵2

9!or02

ir2

ir02

n

or1

k↵1

or01

ir1

ir01

m

(⇤↵2 ) (†↵1 )

p

p1p2

9!p02 9!p01

PB

(?)(†p) (⇤p)

or21

or021

ir021

ir21 (⇤↵1 )(†↵2 )

(⇤↵21 )(†↵21 )

(81)

• Take an FPC to obtain the square marked (⇤↵1 ), which by the universal property of FPCs entails the existence
of a unique morphism p01, and thus by horizontal FPC decomposition that the square marked (⇤p) is an FPC.

• Take a pushout to obtain the square marked (†↵1 ), and an FPC to obtain the square marked (⇤↵2 ), which by the
universal property of FPCs yields also a unique morphism p02, and thus by pullback-pullback decomposition,
the square marked (†p) is a pullback.

• For the case of generic SqPO-semantics, the claim follows by invoking the Beck-Chevalley-Condition (BCC-1)
of Theorem 1, which allows us to conclude that the square marked (†p) is an FPC, and the bottom square marked
(?) is a pullback.

• For the other types of SqPO-semantics, we may develop more general variants of the Beck-Chevalley-Condition
(BCC-1) by suitably adapting the proof strategy of Theorem 1. To this end, consider the diagrammatic statement
presented in (82) below (which is a 3D-rotated and relabeled version of the statement in (21) in order to facilitate
the comparison to the diagram in (81)). In all three cases, the proof strategy consists in (i) taking a pullback to
obtain the second diagram in (82) (where by the universal property of pullbacks entails that there exist unique
arrows ⌃ � q ! ⌅ and ⌥ � q0 ! ⌅); (ii) using pullback-pullback decomposition to prove that all squares
of the interior commutative cube are pullbacks; (iii) invoking a suitable variant of stability of pushouts under
pullbacks to show that the front left inner vertical square is a pushout; and finally (iv) to apply stability of FPCs
under pullbacks in order to demonstrate that the front right inner vertical square is an FPC, such that by the
universal property of FPCs the morphism ⌃ � q ! ⌅ is an isomorphism. It thus remains to clarify the variant
of stability property of pushouts necessary for each kind of semantics:

– For output-linear SqPO-semantics, all morphisms of the back right vertical square are guaranteed to be
M-morphisms, hence the claim follows if C satisfies axiom (H-iii-a).

– For input-linear SqPO-semantics, the morphisms ir2 , ir02 , p1, and (by stability of M-morphisms under
pullback) p001 are guaranteed to beM-morphisms, hence the claim follows if C satisfies axiom (V-iii-a).

– Since linear SqPO-semantics is a special case both of output-linear and input-linear SqPO-semantics, the
claim follows if C satisfies either (H-iii-a) or (V-iii-a).

21Evidently, we could have equivalently obtained the square marked (⇤↵2 ) first by taking a pushout.
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 has pullbacks)1

already depicted in (83) yields a commutative square in D1:

· · ·

· · ·

· · ·

· · ·

· · ·

os is

orp irp

n03 m02k02
n01 k01

or1

or2 ir2

n1

n2 kr2
ir1

kr1

m2

m1

or21 ir21

n002 k002 m002
n001 k01 m001n̄ k̄ n̄

m01

PB PB PB(†↵2 )

(†↵1 ) (⇤↵1 )

(⇤↵2 )

(†�1 )

(†�2 )

(⇤�1 )

(⇤�2 )

(†�1 )
(†�2 ) (⇤�2 )

(⇤�1 )

(†�) (⇤�)

(85)

We have to prove that there exists a unique mediating morphism in D1 (i.e., the dashed D0-morphisms that make the
diagram commute, and such that the squares marked (†�) and (⇤�) are of the correct kinds for the given semantics:

• By the universal property of pullbacks, there exist uniquely the morphisms n̄, k̄ and m̄ marked with dashed
arrows in (85), which make the diagram commute. By the decomposition property of M-morphisms, these
morphisms are moreover inM.

• By pushout-pullback decomposition, the square marked (†�) is a pushout.

• For the case of DPO-semantics, yet again by pushout-pullback decomposition, the square marked (⇤�) is a
pushout.

• For the case of DPO-semantics, by vertical FPC-pullback decomposition, the square marked (⇤�) is an FPC.

In summary, we have thus demonstrated the unique existence of a D1-morphism consisting of the squares marked (†�)
and (⇤�) that make the diagram in D1 commute, which concludes the proof. ⇤

Finally, taking full advantage of the results presented in Section 2, we will investigate the existence of the requisite
fibrational structures for the source and target functors on the double categories for all of the categorical rewriting
semantics of Definition 23.

Theorem 15. Let C be a category that is finitary and a vertical weak adhesive HLR category with respect to a a stable
system of monicsM. For the case of SqPO-semantics, we assume further that C has FPCs alongM-morphisms. Let D
denote the double category based upon C and direct derivations of the respective kind as introduced in Section 4.4.1.
Then the following fibrational properties hold:

(i) The functor S : D1 ! D0 is a multi-opfibration.

(ii) The functor T : D1 ! D0 is a residual multi-opfibration.

Proof. Let us first recall the properties that have to be satisfied by C to be suitable to carry DPO-semantics or SqPO-
semantics:

• For DPO-semantics, it is required that C hasM-multi-IPCs, that it has pushouts alongM-morphisms, and that
M-morphisms are stable under pushout (i.e., the latter two points amount to axiom (V-ii)).

• For SqPO-semantics, it is required that C has FPCs along M-morphisms, that it has pushouts along M-
morphisms, and thatM-morphisms are stable under pushout (i.e., the latter two points amount to axiom (V-ii)).

For DPO-semantics, recall from Proposition 1 that a su�cient condition to ensure that C hasM-multi-IPCs is that
C has pullbacks alongM-morphisms (i.e., axiom (V-i)) and that pushouts alongM-morphisms are stable underM-
pullbacks (i.e., axiom (V-iii-a)), hence in summary it is su�cient to require that C is a vertical weak adhesive HLR
category. The category C then supports the following fibrational structures:
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Final result: table of sufficient conditions for crDCs!

Double-Pushout semantics Sesqui-Pushout semantics

Property linear semi-
linear generic linear output-

linear
input-
linear generic

D0 has
multi-sums X (Lemma 8)

9 horizon-
tal/vertical

units
X (Corollary 7)

vertical
composition X (by pushout-pushout composition) X (by PO-PO- and vertical FPC composition)

horizontal
composition

(Proposition 8)

C has pullbacks
alongM-morphisms

C has
pullbacks C has pullbacks

^ (V-iii-a) ^
(W-iii-a) ^ (L-iii-a) ^ (V-iii-a) ^ (H-iii-a) ^ (V-iii-a) ^ (L-iii-a)

horizontal
decomposition
(Proposition 9)

C has pushouts alongM-morphisms C has pullbacks ^ has pushouts and FPCs
alongM-morphisms

^ has pullbacks
alongM-morphisms

^ (V-iii-b)

^ has
pullbacks
^ (L-iii-b)

^ (V-iii-a)
_ (H-iii-a) ^ (H-iii-a) ^ (V-iii-a) ^ (L-iii-a)

D1 has pullbacks
(Proposition 10) (V-iii-a)

S is a
multi-opfibration

(Theorem 15)

C is a vertical weak adhesive
HLR category

C is vertical weak adhesive HLR and has
FPCs alongM-morphisms

T is a residual
multi-opfibration

(Theorem 15)

C is a vertical weak adhesive
HLR category

C is vertical weak adhesive HLR and has
FPCs alongM-morphisms

Table 3: Requirements on the underlying category for giving rise to compositional rewriting semantics of the various kinds. For all cases, we
minimally assume that C has a stable system of monics, with respect to which C is finitary, with respect to which the variants of adhesivity
properties are required to hold, and such that D0 := C|M has pullbacks. The latter is equivalent to requiring that C has pullbacks of spans of
M-morphisms, which is true for all of the listed adhesivity properties. We moreover use the abbreviation (W-iii) to denote (V-iii) ^ (H-iii).

diagram of (79) into the diagram below:

·

· · · ·

·

· · ⌃ · ·

⌥

o

or2

k↵2

9!or02

ir2

9!ir02

n

or1

k↵1

or01

ir1

9!ir01

m

(⇤↵2 ) (†↵1 )

p

p1p2

p02 p01

PB

(†p) (⇤p)

or21

or021

ir021

ir21 (⇤↵1 )(†↵2 )

(?) (⇤↵21 )(†↵21 )

(80)

• Take pushouts to obtain the squares marked (†p) and (⇤p), which by the universal property of pushouts entails
that there exist unique morphisms or02 and ir01 . Moreover, by pushout-pushout decomposition, the squares marked
(†↵2 ) and (⇤↵1 ) are pushouts.
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Final result: table of sufficient conditions for crDCs!

Double-Pushout semantics Sesqui-Pushout semantics
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linear generic linear output-

linear
input-
linear generic

D0 has
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9 horizon-
tal/vertical

units
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vertical
composition X (by pushout-pushout composition) X (by PO-PO- and vertical FPC composition)

horizontal
composition

(Proposition 8)

C has pullbacks
alongM-morphisms

C has
pullbacks C has pullbacks

^ (V-iii-a) ^
(W-iii-a) ^ (L-iii-a) ^ (V-iii-a) ^ (H-iii-a) ^ (V-iii-a) ^ (L-iii-a)

horizontal
decomposition
(Proposition 9)

C has pushouts alongM-morphisms C has pullbacks ^ has pushouts and FPCs
alongM-morphisms

^ has pullbacks
alongM-morphisms

^ (V-iii-b)

^ has
pullbacks
^ (L-iii-b)

^ (V-iii-a)
_ (H-iii-a) ^ (H-iii-a) ^ (V-iii-a) ^ (L-iii-a)

D1 has pullbacks
(Proposition 10) (V-iii-a)

S is a
multi-opfibration

(Theorem 15)

C is a vertical weak adhesive
HLR category

C is vertical weak adhesive HLR and has
FPCs alongM-morphisms

T is a residual
multi-opfibration

(Theorem 15)

C is a vertical weak adhesive
HLR category

C is vertical weak adhesive HLR and has
FPCs alongM-morphisms

Table 3: Requirements on the underlying category for giving rise to compositional rewriting semantics of the various kinds. For all cases, we
minimally assume that C has a stable system of monics, with respect to which C is finitary, with respect to which the variants of adhesivity
properties are required to hold, and such that D0 := C|M has pullbacks. The latter is equivalent to requiring that C has pullbacks of spans of
M-morphisms, which is true for all of the listed adhesivity properties. We moreover use the abbreviation (W-iii) to denote (V-iii) ^ (H-iii).

diagram of (79) into the diagram below:

·

· · · ·

·

· · ⌃ · ·

⌥
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• Take pushouts to obtain the squares marked (†p) and (⇤p), which by the universal property of pushouts entails
that there exist unique morphisms or02 and ir01 . Moreover, by pushout-pushout decomposition, the squares marked
(†↵2 ) and (⇤↵1 ) are pushouts.

60

Nicolas Behr, Topos Institute Colloquium, June 9, 2022Nicolas Behr, Topos Institute Colloquium, June 9, 2022



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

Final result: table of sufficient conditions for crDCs!

Double-Pushout semantics Sesqui-Pushout semantics

Property linear semi-
linear generic linear output-

linear
input-
linear generic

D0 has
multi-sums X (Lemma 8)

9 horizon-
tal/vertical

units
X (Corollary 7)

vertical
composition X (by pushout-pushout composition) X (by PO-PO- and vertical FPC composition)

horizontal
composition

(Proposition 8)

C has pullbacks
alongM-morphisms

C has
pullbacks C has pullbacks

^ (V-iii-a) ^
(W-iii-a) ^ (L-iii-a) ^ (V-iii-a) ^ (H-iii-a) ^ (V-iii-a) ^ (L-iii-a)

horizontal
decomposition
(Proposition 9)

C has pushouts alongM-morphisms C has pullbacks ^ has pushouts and FPCs
alongM-morphisms

^ has pullbacks
alongM-morphisms

^ (V-iii-b)

^ has
pullbacks
^ (L-iii-b)

^ (V-iii-a)
_ (H-iii-a) ^ (H-iii-a) ^ (V-iii-a) ^ (L-iii-a)

D1 has pullbacks
(Proposition 10) (V-iii-a)

S is a
multi-opfibration

(Theorem 15)

C is a vertical weak adhesive
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(Theorem 15)
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Table 3: Requirements on the underlying category for giving rise to compositional rewriting semantics of the various kinds. For all cases, we
minimally assume that C has a stable system of monics, with respect to which C is finitary, with respect to which the variants of adhesivity
properties are required to hold, and such that D0 := C|M has pullbacks. The latter is equivalent to requiring that C has pullbacks of spans of
M-morphisms, which is true for all of the listed adhesivity properties. We moreover use the abbreviation (W-iii) to denote (V-iii) ^ (H-iii).
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• Take pushouts to obtain the squares marked (†p) and (⇤p), which by the universal property of pushouts entails
that there exist unique morphisms or02 and ir01 . Moreover, by pushout-pushout decomposition, the squares marked
(†↵2 ) and (⇤↵1 ) are pushouts.
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horizontal
decomposition
(Proposition 9)

C has pushouts alongM-morphisms C has pullbacks ^ has pushouts and FPCs
alongM-morphisms

^ has pullbacks
alongM-morphisms

^ (V-iii-b)

^ has
pullbacks
^ (L-iii-b)

^ (V-iii-a)
_ (H-iii-a) ^ (H-iii-a) ^ (V-iii-a) ^ (L-iii-a)

D1 has pullbacks
(Proposition 10) (V-iii-a)

S is a
multi-opfibration

(Theorem 15)

C is a vertical weak adhesive
HLR category

C is vertical weak adhesive HLR and has
FPCs alongM-morphisms

T is a residual
multi-opfibration

(Theorem 15)

C is a vertical weak adhesive
HLR category

C is vertical weak adhesive HLR and has
FPCs alongM-morphisms

Table 3: Requirements on the underlying category for giving rise to compositional rewriting semantics of the various kinds. For all cases, we
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Instantiations of rewriting semantics in theory and applications 
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Explicit rewriting semantics (DPO, SqPO, …)

categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.

57

compositional rewriting  
double categories (crDCs)
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Figure 2: Convention for source and target functors for double categories.
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Figure 3: On the definition of double categories.
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Explicit rewriting semantics (DPO, SqPO, …)

categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Figure 2: Convention for source and target functors for double categories.
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(a) Vertical composition ⇧v.

· · · · · ·
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(b) Horizontal composition ⇧h.
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(c) (Strict) vertical unitarity.
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(d) (Strict) horizontal unitarity.

Figure 3: On the definition of double categories.
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 “DPO  adhesivity properties”, “SqPO  quasi-topoi”≈ → →
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Category
(underlying data type) qu

asi
-to

po
s

ad
he

siv
e

qu
asi

-ad
he

siv
e

ad
he

siv
e HLR

ho
r. w

eak
ad

h.
HLR

ve
rt.

weak
ad

h.
HLR

references

Set
(sets) X X X X X X [5]

Graph
(directed multigraphs) X X X X X X [5]

HyperGraph
(directed ordered hypergraphs) X X X X X X [7, Ex. 7]

Sig
(algebraic signatures) X X X X X X [7, Ex. 6]

Ŝ
(presheaves on category S) X X X X X X [58, 54]

T̂⌃
(term graphs over a signature ⌃) ? X X X X [41]

TripleGraph
(functor category [S3,Graph]) ? X X X [3, Fact 4.18]

AGraph⌃
(attributed graphs over signature ⌃) ? X X X [3, Thm. 11.11], [8, 54]

SymbGraphD
(symbolic graphs over ⌃-algebra D) ? X X X [59, Thm. 2], [54]

uGraph
(undirected multigraphs) ? X X [29]

ElemNets
(elementary Petri nets) ? (!) X X [8]

PTnets
(place/transition nets) ? X X [3, Fact 4.21], [8]

Spec
(algebraic specifications) X X X [7, Ex. 6], [3, Fact 4.24]

SGraph
(directed simple graphs) X X X [7, Prop. 17], Corollary 5(q-v)

SetF
(coalgebras for F : Set! Set) (⇤) (†) [7], [57, Thm. 1]

lSets
(list sets) ? X [39]

Table 2: Examples of categories exhibiting various forms of adhesivity properties. The symbol ? indicates when a certain property is (to the best of
our knowledge) not known to hold. Note that for the HLR variants of adhesivity properties, the information not contained in the table is the precise
nature (cf. references provided) of the stable system of monicsM for which the adhesivity properties hold. Moreover, the precise conditions (⇤)
and (†) under which the category SetF of F-coalgebras has quasi-topos or adhesivity properties are provided in [7] and [57, Thm. 1], respectively.
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Some constructions for categories with adhesivity properties
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concern comma category constructions, with a number of illustrative examples provided in Table 1. More intricate
examples still have been developed in the context of so-called hierarchical graphs, which are obtained via comma-
categorical constructions along various notions of super-power functors, and whose adhesivity properties have been
studied in [56, 57] (see also [44]).

E F(V) ⇥ F(V) F(V) V

E0 F(V 0) ⇥ F(V 0) F(V 0) V 0

◆ � F

'E ��F('V ) F('V ) 'V

◆0 � F

F Description
IdSet directed multigraphs

⇤
⇤

directed “ordered” hypergraphs with multiple
incidences (HyperGraph [3, Fact 4.17] aka PNet [7,
Ex. 7])

M
directed “unordered” hypergraphs with multiple
incidences (= PTNets of [3, Fact 4.21])

P
directed “unordered” hypergraphs with simple
incidences (= ElemNets of [3, Fact 4.20])

E F(V) V

E0 F(V 0) V 0

F

'E F('V ) 'V

F

◆

◆0

F Description

P(1,2) undirected multigraphs [29]

⇤
⇤ undirected “ordered” hypergraphs with multiple

incidences (i.e. lists)

M undirected “unordered” hypergraphs with multiple
incidences

P undirected “unordered” hypergraphs with simple
incidences

Table 1: Collection of examples for categories with adhesivity properties based upon two “schemas” of comma category constructions. Here, we
employ the notations ⇤

⇤ for the free monoid functor, M (also denoted �⇤ in [3]) for the free commutative monoid functor, P for the covariant
powerset functor, and P(1,2) for the restricted version thereof (cf. e.g. [57]).

4.2. Quasi-topoi
Quasi-topoi have been considered in the context of rewriting theories as a natural generalization of adhesive

categories in [5]. While several adhesive categories of interest to rewriting are topoi, including in particular the
category Graph of directed multigraphs (cf. Definition 16), it is not di�cult to find examples of categories equally
relevant to rewriting theory that fail to be topoi. A notable such example is the category SGraph of directed simple
graphs (cf. Definition 21).

Let us first recall a number of results from the work of Cockett and Lack [35, 36] on restriction categories. We
will only need a very small fragment of their theory, namely the definition and existence guarantees for M-partial
map classifiers, so we will follow mostly [25]. We will in particular not be concerned with the notion ofM-partial
maps itself.

Definition 19 ([25], Sec. 2.1; compare [36], Sec. 2.1). For a stable system of monics M in a category C, an M-
partial map classifier (T, ⌘) is a functor T : C! C and a natural transformation ⌘ : IDC

.�! T such that

1. for all X 2 obj(C), ⌘X : X ! T (X) is inM

2. for each span (A
m � X

f�! B) with m 2 M, there exists a unique morphism A
'(m, f )�����! T (B) such that (m, f ) is a

pullback of ('(m, f ), ⌘B).

Proposition 4 ([25], Prop. 6). For everyM-partial map classifier (T, ⌘), T preserves pullbacks, and ⌘ is Cartesian,

i.e., for each X
f�! Y, (⌘x, f ) is a pullback of (T ( f ), ⌘Y ).
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Instantiations of rewriting semantics in theory and applications 
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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organic chemistry

knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Figure 2: Convention for source and target functors for double categories.
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Instantiations of rewriting semantics in theory and applications 
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Explicit rewriting semantics (DPO, SqPO, …)

categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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I Pre-proposal’s context, positioning and objective(s)

The advent of the applied category theory (ACT) paradigm as well as large-scale projects for formal-
izing mathematics via theorem provers (math-comp, math-classes, ....) offers an intriguing possibility
for interdisciplinary research in the theoretical sciences. We propose to apply these paradigms to a
research area in theoretical computer science that is ideally suited: the theory of compositional cat-
egorical rewriting, the modern generalization of the algebraic approach to graph rewriting.Starting
from the pioneering work of Ehrig et al. in the early 1970s [8], with a key milestone the theory of
adhesive categories as introduced by Lack and Sobocinski in the early 2000s [13], the categorical
approach to rewriting permits to treat a vast variety of systems of practical and theoretical interest,
and is the de facto standard approach in this field.

Contrary to existing projects aimed at formalizingmathematical concepts such as category theory
itself via theorem provers such as *Q[ [6], Ab�#2HH2f>PG [15] or G2�M [14], a peculiarity of categor-
ical rewriting resides in the nature of lemmata and proofs in this formalism, which is characterized
as being heavily based upon a diagrammatic calculus on commutative diagrams. This poses the
intriguing challenge of developing a suitable approach to profit from this highly modularized type of
mathematical reasoning also within the strategy to formalization within Coq, as well as the design
principle for interacting with Coq in a diagram-based form.

The key vision of this project is to assemble a team of domain experts as well as an international
online interest group targeted at developing and curating an interactive, Coq-enabled Wiki system
for categorical rewriting theory, aimed at both certifying and curating the knowledge in this research
field in a modern, openly accessible format.

a Objectives and scientific hypotheses

Work Package 1: Foundations and core engine

Task 1.1: Development of a methodology for diagrammatic reasoning in Coq. One of the key tech-
niques in formulating and proving statements in categorical rewriting theories is a certain type of
calculus on commutative diagrams. Fixing a suitable ambient category within which the given class
of rewriting systems is formulated, a number of crucial technical properties are made available, such
as certain statements on existence and nature of pushout squares (e.g. stability of monomorphisms),
certain subdivisibility properties of commutative squares or even three-dimensional statements such
as the van Kampen property (which entails certain statements about commutative cubes). Inspect-
ing the statement of proofs such as of the concurrency theorems, it is evident that a well-adapted
formalization of categorical rewriting theory within Coq should ideally be based upon a form of di-
agrammatic reasoning approach that closely follows the practice in the field. Contrary to existing
category theory libraries, we posit that an approach based upon the notion of sketches [1] (PAM?)
and on a carefully adapted usage of sigma-types in the spirit of [16] will permit a modularized ap-
proach to verifying commutative diagram based reasoning in Coq.

Task 1.2: Formalization (in Coq) and certification of a representative collection of axioms and theo-
rems for categorical rewriting theory. Taking the representative collection of axioms, lemmata and
theorems for compositional categorical rewriting theory as presented in [3, 5] as a starting point, we
aim to formalize a consistent corpus of formal knowledge in this field via our novel diagrammatic rea-
soning approach. This corpus should contain an encoding of suitable types of base categories (i.e.,
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Partner Last name First name Position Tasks Involvement
Université Paris Cité BEHR Nicolas CNRS CR SC 1.1, 1.2, 3.1, 3.2 16 p.m

GALLEGO Emilio Inria SRP 1.1, 2.1, 2.2 10 p.m
GHEERBRANT Amélie MdC 2.1 1 p.m
HERBELIN Hugo Inria DR 1.1, 1.2 7 p.m
MELLIÈS Paul-André CNRS DR 1.1, 1.2, 3.2 14 p.m
ROGOVA Alexandra PhD st. 2.1 1 p.m
PhD student (to recruit) 36 p.m

ENS-Lyon HARMER Russell CNRS CR LC 1.1, 1.2, 3.1, 3.2 16 p.m
HIRSCHOWITZ Tom CNRS DR 1.1, 3.2 5 p.m
POUS Damien CNRS DR 1.1, 1.2 8 p.m
PostDoc (to recruit) 24 p.m

École Polytechnique MIMRAM Samuel PR 1.1, 2.2, 3.2 4 p.m
WERNER Benjamin PR LC 2.1, 2.2 4 p.m
ZEILBERGER Noam MdC 1.1, 1.2, 3.2 5 p.m
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Changes between the pre-proposal and the detailed proposal

In order to accommodate for minor changes in the budget estimates for personnel costs since the
pre-proposal phase, the budget was adjusted by a 0.5% increase compared to the originally re-
quested budget. Furthermore, we have added Ambroise Lafont as an external consultant to the list
of persons involved in the project, as his YADE diagram editor prototype will serve as the basis for
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1 / 20

coreact.wiki



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

Category theory

•Special types of categories: 
•adhesive/quasi-adhesive/adhesive HLR/weak adhesive HLR/… 
•quasi-topoi 

•Double categories 
•Universal constructions: 

• stable systems of monics, factorisation systems, multi-sums, … 
•pushouts, pullbacks, final pullback complements, multi-initial pushout 
complements, final pullback complement augmentations, … 

•Grothendieck fibrations/multi-opfibrations/residual multi-opfibrations … 
•Lemmata on special properties of universal constructions: 

• (De-)composition properties 
• fibrational properties 
•Beck-Chevalley conditions

Diagrammatic reasoning

Foundations of compositional rewriting theory

•Compositional rewriting double categories (crDCs) 
•Concurrency Theorems 
•Associativity Theorems 
•Rule Algebra and Stochastic Mechanics 
•Tracelet Hopf Algebras and Decomposition Spaces

Collection of rewriting semantics

•Double Pushout/Sesqui-Pushout/Single-Pushout/AGREE/PBPO+/… 
• linear/input-linear/output-linear/non-linear/… 

•Theory of constraints and application conditions: 
•nested application conditions 
•constraint-guaranteeing/-preserving semantics 

•Compositional rewriting for rules with conditions 
• shift and transport constructions 
•Concurrency and associativity theorems 
•Rule algebras/stochastic mechanics/tracelets/…

Executable Applied Category theory (ExACT)

•Constructive characterization of categories with adhesivity/quasi-topoi: 
•Artin gluing/slice/coslice/product/sum/functor and comma categories/… 
•collection of practically relevant examples (Graph as presheaf topos, 
SimpleGraph via Artin gluing, HyperGraph as comma category, …) 

•Translation from rewriting semantics to SMT solvers/theorem provers 
•Reference prototype algorithms for concrete rewriting semantics

•Commutative diagrams 
•Reasoning moves 

• from universal properties 
• from diagrammatic lemmata 

•Compositionality of reasoning moves

Formalisations for coreact.workbench
•Auxiliary tactics to convert between drawings and Coq expressions 
•From drawing transformations to reasoning moves 
•From drawing transformations to Cypher queries



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

Category theory

•Special types of categories: 
•adhesive/quasi-adhesive/adhesive HLR/weak adhesive HLR/… 
•quasi-topoi 

•Double categories 
•Universal constructions: 

• stable systems of monics, factorisation systems, multi-sums, … 
•pushouts, pullbacks, final pullback complements, multi-initial pushout 
complements, final pullback complement augmentations, … 

•Grothendieck fibrations/multi-opfibrations/residual multi-opfibrations … 
•Lemmata on special properties of universal constructions: 

• (De-)composition properties 
• fibrational properties 
•Beck-Chevalley conditions

Diagrammatic reasoning

Foundations of compositional rewriting theory

•Compositional rewriting double categories (crDCs) 
•Concurrency Theorems 
•Associativity Theorems 
•Rule Algebra and Stochastic Mechanics 
•Tracelet Hopf Algebras and Decomposition Spaces

Collection of rewriting semantics

•Double Pushout/Sesqui-Pushout/Single-Pushout/AGREE/PBPO+/… 
• linear/input-linear/output-linear/non-linear/… 

•Theory of constraints and application conditions: 
•nested application conditions 
•constraint-guaranteeing/-preserving semantics 

•Compositional rewriting for rules with conditions 
• shift and transport constructions 
•Concurrency and associativity theorems 
•Rule algebras/stochastic mechanics/tracelets/…

Executable Applied Category theory (ExACT)

•Constructive characterization of categories with adhesivity/quasi-topoi: 
•Artin gluing/slice/coslice/product/sum/functor and comma categories/… 
•collection of practically relevant examples (Graph as presheaf topos, 
SimpleGraph via Artin gluing, HyperGraph as comma category, …) 

•Translation from rewriting semantics to SMT solvers/theorem provers 
•Reference prototype algorithms for concrete rewriting semantics

•Commutative diagrams 
•Reasoning moves 

• from universal properties 
• from diagrammatic lemmata 

•Compositionality of reasoning moves

Formalisations for coreact.workbench
•Auxiliary tactics to convert between drawings and Coq expressions 
•From drawing transformations to reasoning moves 
•From drawing transformations to Cypher queries



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

Category theory

•Special types of categories: 
•adhesive/quasi-adhesive/adhesive HLR/weak adhesive HLR/… 
•quasi-topoi 

•Double categories 
•Universal constructions: 

• stable systems of monics, factorisation systems, multi-sums, … 
•pushouts, pullbacks, final pullback complements, multi-initial pushout 
complements, final pullback complement augmentations, … 

•Grothendieck fibrations/multi-opfibrations/residual multi-opfibrations … 
•Lemmata on special properties of universal constructions: 

• (De-)composition properties 
• fibrational properties 
•Beck-Chevalley conditions

Diagrammatic reasoning

Foundations of compositional rewriting theory

•Compositional rewriting double categories (crDCs) 
•Concurrency Theorems 
•Associativity Theorems 
•Rule Algebra and Stochastic Mechanics 
•Tracelet Hopf Algebras and Decomposition Spaces

Collection of rewriting semantics

•Double Pushout/Sesqui-Pushout/Single-Pushout/AGREE/PBPO+/… 
• linear/input-linear/output-linear/non-linear/… 

•Theory of constraints and application conditions: 
•nested application conditions 
•constraint-guaranteeing/-preserving semantics 

•Compositional rewriting for rules with conditions 
• shift and transport constructions 
•Concurrency and associativity theorems 
•Rule algebras/stochastic mechanics/tracelets/…

Executable Applied Category theory (ExACT)

•Constructive characterization of categories with adhesivity/quasi-topoi: 
•Artin gluing/slice/coslice/product/sum/functor and comma categories/… 
•collection of practically relevant examples (Graph as presheaf topos, 
SimpleGraph via Artin gluing, HyperGraph as comma category, …) 

•Translation from rewriting semantics to SMT solvers/theorem provers 
•Reference prototype algorithms for concrete rewriting semantics

•Commutative diagrams 
•Reasoning moves 

• from universal properties 
• from diagrammatic lemmata 

•Compositionality of reasoning moves

Formalisations for coreact.workbench
•Auxiliary tactics to convert between drawings and Coq expressions 
•From drawing transformations to reasoning moves 
•From drawing transformations to Cypher queries



Nicolas Behr, Topos Institute Colloquium, June 9, 2022



Nicolas Behr, Topos Institute Colloquium, June 9, 2022

compositional rewriting  
double categories (crDCs)

O O I I

O0 O0 I0 I0

r

m

r0

m0
S

m
T

m0 ↵
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Explicit rewriting semantics (DPO, SqPO, …)

categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Instantiations of rewriting semantics in theory and applications 
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Explicit rewriting semantics (DPO, SqPO, …)

categorical rewriting semantics available in the literature, including cases where the matches and co-matches are not
required to beM-morphisms, yet we focus here on the aforementioned eight variants for concreteness as a su�ciently
diverse set of test cases for our new theoretical framework for categorical rewriting theories.

We will now follow the proof-strategy set forth via the formalism introduced in Section 3 in order to determine
e�ciently sets of su�cient conditions under which the eight di↵erent semantics of Definition 23 give rise to compo-
sitional rewriting double categories (crDCs), and thus to compositional rewriting theories. In this way, we are able to
demonstrate the high level of modularization a↵orded by our novel approach, and at the same time highlight some of
the similarities and crucial mathematical di↵erences between the various rewriting semantics.

4.4.1. Double-categorical structures
For all eight semantics of Definition 23, we will let D0 be defined as C|M, i.e., the restriction of C alongM (with

objects the objects of C, and morphisms the morphisms ofM). We let the D1 be defined as rules for the horizontal
morphisms (i.e., the objects of D1), and via direct derivations (i.e., diagrams of the form in (75)) for the squares (i.e.,
the morphisms of D1). This identifies the crDCs we will construct as double categories obtained via restriction of the
double category Span(C) of spans (cf. e.g. [63, Ex.12.3.16]), with D0 = C, with spans of C as horizontal morphisms
(i.e., as objects of D1), and with commutative diagrams of the form below (without any restrictions on the squares
other than commutativity) for the squares of Span(C).

O I O Kr I

:=

O0 I0 O0 Kr0 I0

r

m⇤ m

r0

m⇤

or

k↵

or0

ir

ir0

m↵ (76)

Rather than having to work through a lengthy set of coherence conditions for our crDCs to indeed qualify as double
categories, the fact that they are all obtained as restrictions of Span(C) simplifies this task down to verifying the
following properties, which ensure that the restrictions are compatible with the existence of horizontal and vertical
units, and with horizontal and vertical compositions:

Corollary 7. For all eight semantics of Definition 23, the resulting definitions of D0 and D1 have horizontal and
vertical units in the following form:

I I

I0 I0

UI

m m

UI0

Um :=

I I I

I0 I0 I0

m m m ,

O I

O I

r

1O 1I

r

idr :=

O Kr I

O0 Kr0 I0

or

or0

ir

ir0

(77)

Proof. The only non-trivial statement to prove is that the diagrams in (77) qualify as direct derivations of the respective
types in a given semantics according to Definition 23. But this follows immediately from the results of Lemma 4,
whereby all commutative squares of the types occurring in the direct derivations depicted in (77) are simultaneously
pushouts and final pullback complements. Moreover, since by assumptionM is a stable system of monics, it contains
in particular all isomorphisms, which completes the proof that the direct derivations in (77) are well-formed.

As mentioned in Table 3, vertical composition is guaranteed to be well-posed in all cases because of pushout
composition and vertical FPC composition. In contrast, it is considerably more intricate to prove that horizontal
composition is well-posed, which is the first instance where adhesivity properties are required in di↵erent forms
depending on the precise nature of the chosen rewriting semantics:

Proposition 8. Under the additional assumptions on C presented in Table 3, each of the rewriting semantics of
Definition 23 yields a well-posed horizontal composition for direct derivations.
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Figure 3: On the definition of double categories.
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Prénom Nom
Statut
Complément

20 mai 2022

Nom
Adresse

Objet de la lettre

A qui de droit,

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in re-
prehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.

Bien cordialement,

Prénom Nom
fonction

Prénom Nom
Statut
Complément

20 mai 2022

Nom
Adresse

Objet de la lettre

A qui de droit,

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in re-
prehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.

Bien cordialement,

Prénom Nom
fonction

Prénom Nom
Statut
Complément

20 mai 2022

Nom
Adresse

Objet de la lettre

A qui de droit,

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in re-
prehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.

Bien cordialement,
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⇤

Remark 9. The proof of the associativity theorem in our novel fibrational formulation of compositional rewriting

double categories is a strong indication that modularizing the categorical structures in this form enables vastly com-

plex mathematical developments feasible, and at the same time provides some deep structural insights. Most im-

portantly, our characterization of a given categorical rewriting semantics to qualify as being compositional is based

exclusively on verifying properties of just the direct derivations (and on the existence of multi-sums), i.e., only on the

very definition of the rewriting semantics itself. The above derivation demonstrates that our notion of compositional

rewriting double categories (crDCs) guarantees the existence of both a concurrency theorem and an associativity the-

orem, which is why we are led to conjecture that indeed crDCs might provide an e�cient approach also for verifying

compositionality of rewriting semantics beyond the eight di↵erent semantics for which we instantiate crDCs in the

present paper (cf. Section 4.4).
4. Examples of classes of compositional rewriting theories

This section is structured into three main parts: in Sections 4.1 and 4.2, we will present classes of categories

that admit compositional rewriting theories (i.e., various notions of categories with adhesivity properties, and quasi-

topoi, respectively); in Section 4.3, we will demonstrate that these categories admit the requisite constructions of

compositional rewriting double categories; we will then demonstrate in Section 4.4 a variety of rewriting semantics

and illustrations thereof based upon our general framework of compositional rewriting theories.

4.1. Categories with adhesivity properties

Starting in the early 2000s, the seminal work of Lack and Sobocinski [4, 5, 7] introducing adhesive and quasi-

adhesive categories, which was later generalized by Ehrig et al.[40, 3, 38] to adhesive HLR and weak adhesive HLR

categories and their variants, constituted a significant breakthrough in formalizing and standardizing the theory of

Double-Pushout (DPO) rewriting. In this section, we will quote the salient definitions as well as key results from this

research, with the purpose of providing a curated list of categories of practical interest that carry one of the variants of

adhesivity properties mentioned above. We refer the interested readers to [3, 38] (cf. also [29]) for further background
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3.3. Compositional rewriting double categories

Definition 13. A double category (DC) D is a compositional rewriting DC (crDC) if it has the following properties:

(i) D0 has multi-sums.

(ii) D0 and D1 have pullbacks. (This entails in particular that for i 2 {1, 2}
, Di morphisms are stable under pullback,

and pullbacks in Di are e↵ective, i.e., for any span of Di morphisms extending a pullback diagram in Di, the

unique mediating morphism is in Di.)

(iii) Squares in D have the following horizontal decomposition property:
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: 9!•
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(43)

(iv) The source functor S : D1 ! D0 is a multi-opfibration.

(v) The target functor T : D1 ! D0 is a residual multi-opfibration.

Remark 7. The horizontal decomposition property of squares in D as defined above bears a striking resemblance to

the definition of multi-opfibrations, hence we suspect that under a suitable generalization of the concept of multi-

opfibrations to a bicategorical setting, the property might be given a fibrational interpretation. This question is cur-

rently under active investigation (joint work with P.-A. Melliès and N. Zeilberger).

3.4. Concurrency theorem

The following theorem exhibits a first and rather e�cient application of the fibrational structures introduced in

this paper, i.e., a completely universal and comparatively compact proof of a so-called concurrency theorem for

compositional rewriting theories:

Theorem 8. Let D be a compositional rewriting double category. Then the following statements hold (where the

morphism marked ? in the diagram on the right is a residue, and the cospan into its domain a multi-sum element.):

·
·

·
·

·
·

·
·

·

·
·

·

·
·

· ·

·

r1

?

r2

r02

r01

r02⇧r
0
1

1:1

r2

r1

r0021

r002

r001

�2

�1

�021

↵2

↵1

(44)

• Synthesis: For every two-step sequence (↵1,↵2) of direct derivations (i.e., squares of D “adjacent at the foot”),

there exist direct derivations (�1, �2, �21), uniquely determined up to universal isomorphisms, such that the

direct derivation �21 results in an object isomorphic to the result of ↵2 after ↵1.
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• Finally, since " j( f ) =  � ��1
` , " j( f ) is an isomorphism, which concludes the proof.

⇤

We conclude the general discussion of multi-opfibrations with the following technical results, which will be used
in the proof of the associativity theorem for compositional rewriting theories in Section 3.5:

Lemma 2 (Pullback-splitting lemma for multi-opfibrations). Let E be a category that has pullbacks, and let M :
E! B be a multi-opfibration. Then the following property holds:
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e e000

b001

b b0 b000

b002

M

f

g2 h2

g1
h1

M

↵

PB

:

e00j,k

e e0j e000

e00j,` b001

b b0 b000

b002

M

f

g2 h2

g1

h1

M

↵

PB

9 " j( f )

M

9 " j,k(g1)
9! � j,k

M

M

9 " j,`(g2) 9! � j,`

9! � j
PB

(9)

More explicitly, for every diagram such as on the left of (9), whose bottom part contains a pullback square in B, the
following properties hold true:

(i) There exists an E-morphism e � " j( f ) ! e0j such that there exists a unique E-morphism e0j � � j ! e000 with
M(" j( f )) = f and M(� j) = h1 � g1 = h2 � g2, and such that the diagram commutes.

(ii) There then exist E-morphisms e0j � " j,k(g1) ! e00j,k and e0j � " j,`(g2) ! e00j,` such that there exist unique E-
morphisms e00j,k � � j,k ! e000 and e00j,` � � j,` ! e000 such that M(" j,k(g1)) = g1, " j,`(g2)) = g2, M(� j,k) = h1 and
M(� j,`) = h2, and such that the diagram commutes.

(iii) Moreover, the square in E into e000 is a pullback.

Proof. Claims (i) and (ii) follow directly from repeated applications of the universal property of multi-opfibrations.
It thus remains to prove claim (iii), i.e., that the square in E on the top right of the diagram in (9) is indeed a pullback.
To this end, we construct the auxiliary diagram below by taking a pullback:

e00j,k

e e0j ep e000

e00j,` b001

b b0 bp b000

b002

M

f

g2 h2

g1

h1

M

PB

9 " j( f )

M

9 " j,k(g1)
9! � j,k

M

M

9 " j,`(g2) 9! � j,`

� j

9! ⇡

⇡01

⇡02

M

p=M(⇡)
p01

p02

PB

9! q

(10)

• By the universal property of pullbacks, there exists an E-morphism e0j � ⇡! ep (where ep denotes the pullback
object) that makes the diagram commute.

• Since M is a functor, we also obtain B-morphisms b0�p! bp (where bp = M(ep)), p01 = M(⇡01) and p02 = M(⇡02)
that make the diagram commute.
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Merci beaucoup !
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